| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvitg.1 |
⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) |
| 2 |
|
cbvitg.2 |
⊢ Ⅎ 𝑦 𝐵 |
| 3 |
|
cbvitg.3 |
⊢ Ⅎ 𝑥 𝐶 |
| 4 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑦 0 |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑦 ≤ |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑦 ℜ |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑦 / |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑦 ( i ↑ 𝑘 ) |
| 10 |
2 8 9
|
nfov |
⊢ Ⅎ 𝑦 ( 𝐵 / ( i ↑ 𝑘 ) ) |
| 11 |
7 10
|
nffv |
⊢ Ⅎ 𝑦 ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
| 12 |
5 6 11
|
nfbr |
⊢ Ⅎ 𝑦 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
| 13 |
4 12
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
| 14 |
13 11 5
|
nfif |
⊢ Ⅎ 𝑦 if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑥 0 |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑥 ℜ |
| 19 |
|
nfcv |
⊢ Ⅎ 𝑥 / |
| 20 |
|
nfcv |
⊢ Ⅎ 𝑥 ( i ↑ 𝑘 ) |
| 21 |
3 19 20
|
nfov |
⊢ Ⅎ 𝑥 ( 𝐶 / ( i ↑ 𝑘 ) ) |
| 22 |
18 21
|
nffv |
⊢ Ⅎ 𝑥 ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) |
| 23 |
16 17 22
|
nfbr |
⊢ Ⅎ 𝑥 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) |
| 24 |
15 23
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) |
| 25 |
24 22 16
|
nfif |
⊢ Ⅎ 𝑥 if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) |
| 26 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 27 |
1
|
fvoveq1d |
⊢ ( 𝑥 = 𝑦 → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) |
| 28 |
27
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ↔ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) ) |
| 29 |
26 28
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) ) ) |
| 30 |
29 27
|
ifbieq1d |
⊢ ( 𝑥 = 𝑦 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 31 |
14 25 30
|
cbvmpt |
⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 32 |
31
|
a1i |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
| 33 |
32
|
fveq2d |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 34 |
33
|
oveq2d |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) |
| 35 |
34
|
sumeq2i |
⊢ Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 36 |
|
eqid |
⊢ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
| 37 |
36
|
dfitg |
⊢ ∫ 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 38 |
|
eqid |
⊢ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) |
| 39 |
38
|
dfitg |
⊢ ∫ 𝐴 𝐶 d 𝑦 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 40 |
35 37 39
|
3eqtr4i |
⊢ ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑦 |