Step |
Hyp |
Ref |
Expression |
1 |
|
cbvitg.1 |
⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) |
2 |
|
cbvitg.2 |
⊢ Ⅎ 𝑦 𝐵 |
3 |
|
cbvitg.3 |
⊢ Ⅎ 𝑥 𝐶 |
4 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 0 |
6 |
|
nfcv |
⊢ Ⅎ 𝑦 ≤ |
7 |
|
nfcv |
⊢ Ⅎ 𝑦 ℜ |
8 |
|
nfcv |
⊢ Ⅎ 𝑦 / |
9 |
|
nfcv |
⊢ Ⅎ 𝑦 ( i ↑ 𝑘 ) |
10 |
2 8 9
|
nfov |
⊢ Ⅎ 𝑦 ( 𝐵 / ( i ↑ 𝑘 ) ) |
11 |
7 10
|
nffv |
⊢ Ⅎ 𝑦 ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
12 |
5 6 11
|
nfbr |
⊢ Ⅎ 𝑦 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
13 |
4 12
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
14 |
13 11 5
|
nfif |
⊢ Ⅎ 𝑦 if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) |
15 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 |
16 |
|
nfcv |
⊢ Ⅎ 𝑥 0 |
17 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
18 |
|
nfcv |
⊢ Ⅎ 𝑥 ℜ |
19 |
|
nfcv |
⊢ Ⅎ 𝑥 / |
20 |
|
nfcv |
⊢ Ⅎ 𝑥 ( i ↑ 𝑘 ) |
21 |
3 19 20
|
nfov |
⊢ Ⅎ 𝑥 ( 𝐶 / ( i ↑ 𝑘 ) ) |
22 |
18 21
|
nffv |
⊢ Ⅎ 𝑥 ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) |
23 |
16 17 22
|
nfbr |
⊢ Ⅎ 𝑥 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) |
24 |
15 23
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) |
25 |
24 22 16
|
nfif |
⊢ Ⅎ 𝑥 if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) |
26 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
27 |
1
|
fvoveq1d |
⊢ ( 𝑥 = 𝑦 → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) |
28 |
27
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ↔ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) ) |
29 |
26 28
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) ) ) |
30 |
29 27
|
ifbieq1d |
⊢ ( 𝑥 = 𝑦 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
31 |
14 25 30
|
cbvmpt |
⊢ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
32 |
31
|
a1i |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
33 |
32
|
fveq2d |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
34 |
33
|
oveq2d |
⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) |
35 |
34
|
sumeq2i |
⊢ Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
36 |
|
eqid |
⊢ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
37 |
36
|
dfitg |
⊢ ∫ 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
38 |
|
eqid |
⊢ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) |
39 |
38
|
dfitg |
⊢ ∫ 𝐴 𝐶 d 𝑦 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( ( 𝑦 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐶 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
40 |
35 37 39
|
3eqtr4i |
⊢ ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑦 |