Metamath Proof Explorer


Theorem cbvitgv

Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypothesis cbvitg.1 ( 𝑥 = 𝑦𝐵 = 𝐶 )
Assertion cbvitgv 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑦

Proof

Step Hyp Ref Expression
1 cbvitg.1 ( 𝑥 = 𝑦𝐵 = 𝐶 )
2 nfcv 𝑦 𝐵
3 nfcv 𝑥 𝐶
4 1 2 3 cbvitg 𝐴 𝐵 d 𝑥 = ∫ 𝐴 𝐶 d 𝑦