Metamath Proof Explorer


Theorem cbviunf

Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006) (Revised by Andrew Salmon, 25-Jul-2011)

Ref Expression
Hypotheses cbviunf.x 𝑥 𝐴
cbviunf.y 𝑦 𝐴
cbviunf.1 𝑦 𝐵
cbviunf.2 𝑥 𝐶
cbviunf.3 ( 𝑥 = 𝑦𝐵 = 𝐶 )
Assertion cbviunf 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶

Proof

Step Hyp Ref Expression
1 cbviunf.x 𝑥 𝐴
2 cbviunf.y 𝑦 𝐴
3 cbviunf.1 𝑦 𝐵
4 cbviunf.2 𝑥 𝐶
5 cbviunf.3 ( 𝑥 = 𝑦𝐵 = 𝐶 )
6 3 nfcri 𝑦 𝑧𝐵
7 4 nfcri 𝑥 𝑧𝐶
8 5 eleq2d ( 𝑥 = 𝑦 → ( 𝑧𝐵𝑧𝐶 ) )
9 1 2 6 7 8 cbvrexfw ( ∃ 𝑥𝐴 𝑧𝐵 ↔ ∃ 𝑦𝐴 𝑧𝐶 )
10 9 abbii { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 } = { 𝑧 ∣ ∃ 𝑦𝐴 𝑧𝐶 }
11 df-iun 𝑥𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 }
12 df-iun 𝑦𝐴 𝐶 = { 𝑧 ∣ ∃ 𝑦𝐴 𝑧𝐶 }
13 10 11 12 3eqtr4i 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶