Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
General Set Theory
Indexed union - misc additions
cbviunf
Metamath Proof Explorer
Description: Rule used to change the bound variables in an indexed union, with the
substitution specified implicitly by the hypothesis. (Contributed by NM , 26-Mar-2006) (Revised by Andrew Salmon , 25-Jul-2011)
Ref
Expression
Hypotheses
cbviunf.x
⊢ Ⅎ 𝑥 𝐴
cbviunf.y
⊢ Ⅎ 𝑦 𝐴
cbviunf.1
⊢ Ⅎ 𝑦 𝐵
cbviunf.2
⊢ Ⅎ 𝑥 𝐶
cbviunf.3
⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 )
Assertion
cbviunf
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶
Proof
Step
Hyp
Ref
Expression
1
cbviunf.x
⊢ Ⅎ 𝑥 𝐴
2
cbviunf.y
⊢ Ⅎ 𝑦 𝐴
3
cbviunf.1
⊢ Ⅎ 𝑦 𝐵
4
cbviunf.2
⊢ Ⅎ 𝑥 𝐶
5
cbviunf.3
⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 )
6
3
nfcri
⊢ Ⅎ 𝑦 𝑧 ∈ 𝐵
7
4
nfcri
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐶
8
5
eleq2d
⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) )
9
1 2 6 7 8
cbvrexfw
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 )
10
9
abbii
⊢ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 }
11
df-iun
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 }
12
df-iun
⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 }
13
10 11 12
3eqtr4i
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶