Metamath Proof Explorer


Theorem cbviung

Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. Usage of this theorem is discouraged because it depends on ax-13 . See cbviun for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by NM, 26-Mar-2006) (Revised by Andrew Salmon, 25-Jul-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cbviung.1 𝑦 𝐵
cbviung.2 𝑥 𝐶
cbviung.3 ( 𝑥 = 𝑦𝐵 = 𝐶 )
Assertion cbviung 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶

Proof

Step Hyp Ref Expression
1 cbviung.1 𝑦 𝐵
2 cbviung.2 𝑥 𝐶
3 cbviung.3 ( 𝑥 = 𝑦𝐵 = 𝐶 )
4 1 nfcri 𝑦 𝑧𝐵
5 2 nfcri 𝑥 𝑧𝐶
6 3 eleq2d ( 𝑥 = 𝑦 → ( 𝑧𝐵𝑧𝐶 ) )
7 4 5 6 cbvrex ( ∃ 𝑥𝐴 𝑧𝐵 ↔ ∃ 𝑦𝐴 𝑧𝐶 )
8 7 abbii { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 } = { 𝑧 ∣ ∃ 𝑦𝐴 𝑧𝐶 }
9 df-iun 𝑥𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 }
10 df-iun 𝑦𝐴 𝐶 = { 𝑧 ∣ ∃ 𝑦𝐴 𝑧𝐶 }
11 8 9 10 3eqtr4i 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶