Metamath Proof Explorer


Theorem cbviunv

Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003) Add disjoint variable condition to avoid ax-13 . See cbviunvg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypothesis cbviunv.1 ( 𝑥 = 𝑦𝐵 = 𝐶 )
Assertion cbviunv 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶

Proof

Step Hyp Ref Expression
1 cbviunv.1 ( 𝑥 = 𝑦𝐵 = 𝐶 )
2 nfcv 𝑦 𝐵
3 nfcv 𝑥 𝐶
4 2 3 1 cbviun 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶