Metamath Proof Explorer


Theorem cbvixp

Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011)

Ref Expression
Hypotheses cbvixp.1 𝑦 𝐵
cbvixp.2 𝑥 𝐶
cbvixp.3 ( 𝑥 = 𝑦𝐵 = 𝐶 )
Assertion cbvixp X 𝑥𝐴 𝐵 = X 𝑦𝐴 𝐶

Proof

Step Hyp Ref Expression
1 cbvixp.1 𝑦 𝐵
2 cbvixp.2 𝑥 𝐶
3 cbvixp.3 ( 𝑥 = 𝑦𝐵 = 𝐶 )
4 1 nfel2 𝑦 ( 𝑓𝑥 ) ∈ 𝐵
5 2 nfel2 𝑥 ( 𝑓𝑦 ) ∈ 𝐶
6 fveq2 ( 𝑥 = 𝑦 → ( 𝑓𝑥 ) = ( 𝑓𝑦 ) )
7 6 3 eleq12d ( 𝑥 = 𝑦 → ( ( 𝑓𝑥 ) ∈ 𝐵 ↔ ( 𝑓𝑦 ) ∈ 𝐶 ) )
8 4 5 7 cbvralw ( ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ↔ ∀ 𝑦𝐴 ( 𝑓𝑦 ) ∈ 𝐶 )
9 8 anbi2i ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑓𝑦 ) ∈ 𝐶 ) )
10 9 abbii { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ) } = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑓𝑦 ) ∈ 𝐶 ) }
11 dfixp X 𝑥𝐴 𝐵 = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑓𝑥 ) ∈ 𝐵 ) }
12 dfixp X 𝑦𝐴 𝐶 = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑓𝑦 ) ∈ 𝐶 ) }
13 10 11 12 3eqtr4i X 𝑥𝐴 𝐵 = X 𝑦𝐴 𝐶