Step |
Hyp |
Ref |
Expression |
1 |
|
cbvixp.1 |
⊢ Ⅎ 𝑦 𝐵 |
2 |
|
cbvixp.2 |
⊢ Ⅎ 𝑥 𝐶 |
3 |
|
cbvixp.3 |
⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) |
4 |
1
|
nfel2 |
⊢ Ⅎ 𝑦 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 |
5 |
2
|
nfel2 |
⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 |
6 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑦 ) ) |
7 |
6 3
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) ) |
8 |
4 5 7
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) |
9 |
8
|
anbi2i |
⊢ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) ) |
10 |
9
|
abbii |
⊢ { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) } |
11 |
|
dfixp |
⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } |
12 |
|
dfixp |
⊢ X 𝑦 ∈ 𝐴 𝐶 = { 𝑓 ∣ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑓 ‘ 𝑦 ) ∈ 𝐶 ) } |
13 |
10 11 12
|
3eqtr4i |
⊢ X 𝑥 ∈ 𝐴 𝐵 = X 𝑦 ∈ 𝐴 𝐶 |