Step |
Hyp |
Ref |
Expression |
1 |
|
cbvixpv.1 |
⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) |
2 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 ‘ 𝑥 ) = ( 𝑧 ‘ 𝑦 ) ) |
3 |
2 1
|
eleq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑧 ‘ 𝑦 ) ∈ 𝐶 ) ) |
4 |
3
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ‘ 𝑦 ) ∈ 𝐶 ) |
5 |
4
|
anbi2i |
⊢ ( ( 𝑧 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ‘ 𝑦 ) ∈ 𝐶 ) ) |
6 |
5
|
abbii |
⊢ { 𝑧 ∣ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) } = { 𝑧 ∣ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ‘ 𝑦 ) ∈ 𝐶 ) } |
7 |
|
dfixp |
⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑧 ∣ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) } |
8 |
|
dfixp |
⊢ X 𝑦 ∈ 𝐴 𝐶 = { 𝑧 ∣ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑧 ‘ 𝑦 ) ∈ 𝐶 ) } |
9 |
6 7 8
|
3eqtr4i |
⊢ X 𝑥 ∈ 𝐴 𝐵 = X 𝑦 ∈ 𝐴 𝐶 |