Metamath Proof Explorer


Theorem cbvixpv

Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis cbvixpv.1 ( 𝑥 = 𝑦𝐵 = 𝐶 )
Assertion cbvixpv X 𝑥𝐴 𝐵 = X 𝑦𝐴 𝐶

Proof

Step Hyp Ref Expression
1 cbvixpv.1 ( 𝑥 = 𝑦𝐵 = 𝐶 )
2 fveq2 ( 𝑥 = 𝑦 → ( 𝑧𝑥 ) = ( 𝑧𝑦 ) )
3 2 1 eleq12d ( 𝑥 = 𝑦 → ( ( 𝑧𝑥 ) ∈ 𝐵 ↔ ( 𝑧𝑦 ) ∈ 𝐶 ) )
4 3 cbvralvw ( ∀ 𝑥𝐴 ( 𝑧𝑥 ) ∈ 𝐵 ↔ ∀ 𝑦𝐴 ( 𝑧𝑦 ) ∈ 𝐶 )
5 4 anbi2i ( ( 𝑧 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑧𝑥 ) ∈ 𝐵 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑧𝑦 ) ∈ 𝐶 ) )
6 5 abbii { 𝑧 ∣ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑧𝑥 ) ∈ 𝐵 ) } = { 𝑧 ∣ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑧𝑦 ) ∈ 𝐶 ) }
7 dfixp X 𝑥𝐴 𝐵 = { 𝑧 ∣ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝑧𝑥 ) ∈ 𝐵 ) }
8 dfixp X 𝑦𝐴 𝐶 = { 𝑧 ∣ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑦𝐴 ( 𝑧𝑦 ) ∈ 𝐶 ) }
9 6 7 8 3eqtr4i X 𝑥𝐴 𝐵 = X 𝑦𝐴 𝐶