Metamath Proof Explorer


Theorem cbvixpv

Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis cbvixpv.1 ( 𝑥 = 𝑦𝐵 = 𝐶 )
Assertion cbvixpv X 𝑥𝐴 𝐵 = X 𝑦𝐴 𝐶

Proof

Step Hyp Ref Expression
1 cbvixpv.1 ( 𝑥 = 𝑦𝐵 = 𝐶 )
2 nfcv 𝑦 𝐵
3 nfcv 𝑥 𝐶
4 2 3 1 cbvixp X 𝑥𝐴 𝐵 = X 𝑦𝐴 𝐶