Database CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY Uniqueness and unique existence Unique existence: the unique existential quantifier cbvmow  
				
		 
		
			
		 
		Description:   Rule used to change bound variables, using implicit substitution.
       Version of cbvmo  with a disjoint variable condition, which does not
       require ax-10  , ax-13  .  (Contributed by NM , 9-Mar-1995)   (Revised by GG , 23-May-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						cbvmow.1 ⊢  Ⅎ 𝑦  𝜑   
					
						cbvmow.2 ⊢  Ⅎ 𝑥  𝜓   
					
						cbvmow.3 ⊢  ( 𝑥   =  𝑦   →  ( 𝜑   ↔  𝜓  ) )  
				
					Assertion 
					cbvmow ⊢   ( ∃* 𝑥  𝜑   ↔  ∃* 𝑦  𝜓  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							cbvmow.1 ⊢  Ⅎ 𝑦  𝜑   
						
							2 
								
							 
							cbvmow.2 ⊢  Ⅎ 𝑥  𝜓   
						
							3 
								
							 
							cbvmow.3 ⊢  ( 𝑥   =  𝑦   →  ( 𝜑   ↔  𝜓  ) )  
						
							4 
								
							 
							nfv ⊢  Ⅎ 𝑦  𝑥   =  𝑧   
						
							5 
								1  4 
							 
							nfim ⊢  Ⅎ 𝑦  ( 𝜑   →  𝑥   =  𝑧  )  
						
							6 
								
							 
							nfv ⊢  Ⅎ 𝑥  𝑦   =  𝑧   
						
							7 
								2  6 
							 
							nfim ⊢  Ⅎ 𝑥  ( 𝜓   →  𝑦   =  𝑧  )  
						
							8 
								
							 
							equequ1 ⊢  ( 𝑥   =  𝑦   →  ( 𝑥   =  𝑧   ↔  𝑦   =  𝑧  ) )  
						
							9 
								3  8 
							 
							imbi12d ⊢  ( 𝑥   =  𝑦   →  ( ( 𝜑   →  𝑥   =  𝑧  )  ↔  ( 𝜓   →  𝑦   =  𝑧  ) ) )  
						
							10 
								5  7  9 
							 
							cbvalv1 ⊢  ( ∀ 𝑥  ( 𝜑   →  𝑥   =  𝑧  )  ↔  ∀ 𝑦  ( 𝜓   →  𝑦   =  𝑧  ) )  
						
							11 
								10 
							 
							exbii ⊢  ( ∃ 𝑧  ∀ 𝑥  ( 𝜑   →  𝑥   =  𝑧  )  ↔  ∃ 𝑧  ∀ 𝑦  ( 𝜓   →  𝑦   =  𝑧  ) )  
						
							12 
								
							 
							df-mo ⊢  ( ∃* 𝑥  𝜑   ↔  ∃ 𝑧  ∀ 𝑥  ( 𝜑   →  𝑥   =  𝑧  ) )  
						
							13 
								
							 
							df-mo ⊢  ( ∃* 𝑦  𝜓   ↔  ∃ 𝑧  ∀ 𝑦  ( 𝜓   →  𝑦   =  𝑧  ) )  
						
							14 
								11  12  13 
							 
							3bitr4i ⊢  ( ∃* 𝑥  𝜑   ↔  ∃* 𝑦  𝜓  )