Metamath Proof Explorer
Description: Rule to change the bound variable in a maps-to function, using implicit
substitution. (Contributed by NM, 17-Dec-2013)
|
|
Ref |
Expression |
|
Hypotheses |
cbvmpo.1 |
⊢ Ⅎ 𝑧 𝐶 |
|
|
cbvmpo.2 |
⊢ Ⅎ 𝑤 𝐶 |
|
|
cbvmpo.3 |
⊢ Ⅎ 𝑥 𝐷 |
|
|
cbvmpo.4 |
⊢ Ⅎ 𝑦 𝐷 |
|
|
cbvmpo.5 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝐶 = 𝐷 ) |
|
Assertion |
cbvmpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐵 ↦ 𝐷 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmpo.1 |
⊢ Ⅎ 𝑧 𝐶 |
2 |
|
cbvmpo.2 |
⊢ Ⅎ 𝑤 𝐶 |
3 |
|
cbvmpo.3 |
⊢ Ⅎ 𝑥 𝐷 |
4 |
|
cbvmpo.4 |
⊢ Ⅎ 𝑦 𝐷 |
5 |
|
cbvmpo.5 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝐶 = 𝐷 ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐵 |
7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
8 |
|
eqidd |
⊢ ( 𝑥 = 𝑧 → 𝐵 = 𝐵 ) |
9 |
6 7 1 2 3 4 8 5
|
cbvmpox |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐵 ↦ 𝐷 ) |