Metamath Proof Explorer


Theorem cbvmpo

Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013)

Ref Expression
Hypotheses cbvmpo.1 𝑧 𝐶
cbvmpo.2 𝑤 𝐶
cbvmpo.3 𝑥 𝐷
cbvmpo.4 𝑦 𝐷
cbvmpo.5 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → 𝐶 = 𝐷 )
Assertion cbvmpo ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑧𝐴 , 𝑤𝐵𝐷 )

Proof

Step Hyp Ref Expression
1 cbvmpo.1 𝑧 𝐶
2 cbvmpo.2 𝑤 𝐶
3 cbvmpo.3 𝑥 𝐷
4 cbvmpo.4 𝑦 𝐷
5 cbvmpo.5 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → 𝐶 = 𝐷 )
6 nfcv 𝑧 𝐵
7 nfcv 𝑥 𝐵
8 eqidd ( 𝑥 = 𝑧𝐵 = 𝐵 )
9 6 7 1 2 3 4 8 5 cbvmpox ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑧𝐴 , 𝑤𝐵𝐷 )