Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmpo1.1 |
⊢ Ⅎ 𝑥 𝐵 |
2 |
|
cbvmpo1.2 |
⊢ Ⅎ 𝑧 𝐵 |
3 |
|
cbvmpo1.3 |
⊢ Ⅎ 𝑧 𝐶 |
4 |
|
cbvmpo1.4 |
⊢ Ⅎ 𝑥 𝐸 |
5 |
|
cbvmpo1.5 |
⊢ ( 𝑥 = 𝑧 → 𝐶 = 𝐸 ) |
6 |
|
nfv |
⊢ Ⅎ 𝑧 𝑥 ∈ 𝐴 |
7 |
2
|
nfcri |
⊢ Ⅎ 𝑧 𝑦 ∈ 𝐵 |
8 |
6 7
|
nfan |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
9 |
3
|
nfeq2 |
⊢ Ⅎ 𝑧 𝑢 = 𝐶 |
10 |
8 9
|
nfan |
⊢ Ⅎ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) |
11 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 |
12 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 |
13 |
11 12
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
14 |
4
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑢 = 𝐸 |
15 |
13 14
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) |
16 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
17 |
16
|
anbi1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
18 |
5
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑢 = 𝐶 ↔ 𝑢 = 𝐸 ) ) |
19 |
17 18
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) ) ) |
20 |
10 15 19
|
cbvoprab1 |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) } = { 〈 〈 𝑧 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) } |
21 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) } |
22 |
|
df-mpo |
⊢ ( 𝑧 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐸 ) = { 〈 〈 𝑧 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) } |
23 |
20 21 22
|
3eqtr4i |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐸 ) |