Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmpo2.1 |
⊢ Ⅎ 𝑦 𝐴 |
2 |
|
cbvmpo2.2 |
⊢ Ⅎ 𝑤 𝐴 |
3 |
|
cbvmpo2.3 |
⊢ Ⅎ 𝑤 𝐶 |
4 |
|
cbvmpo2.4 |
⊢ Ⅎ 𝑦 𝐸 |
5 |
|
cbvmpo2.5 |
⊢ ( 𝑦 = 𝑤 → 𝐶 = 𝐸 ) |
6 |
2
|
nfcri |
⊢ Ⅎ 𝑤 𝑥 ∈ 𝐴 |
7 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐵 |
8 |
7
|
nfcri |
⊢ Ⅎ 𝑤 𝑦 ∈ 𝐵 |
9 |
6 8
|
nfan |
⊢ Ⅎ 𝑤 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
10 |
3
|
nfeq2 |
⊢ Ⅎ 𝑤 𝑢 = 𝐶 |
11 |
9 10
|
nfan |
⊢ Ⅎ 𝑤 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) |
12 |
1
|
nfcri |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
13 |
|
nfv |
⊢ Ⅎ 𝑦 𝑤 ∈ 𝐵 |
14 |
12 13
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) |
15 |
4
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑢 = 𝐸 |
16 |
14 15
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) |
17 |
|
eleq1w |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵 ) ) |
18 |
17
|
anbi2d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) |
19 |
5
|
eqeq2d |
⊢ ( 𝑦 = 𝑤 → ( 𝑢 = 𝐶 ↔ 𝑢 = 𝐸 ) ) |
20 |
18 19
|
anbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) ) ) |
21 |
11 16 20
|
cbvoprab2 |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) } = { 〈 〈 𝑥 , 𝑤 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) } |
22 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) } |
23 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑤 ∈ 𝐵 ↦ 𝐸 ) = { 〈 〈 𝑥 , 𝑤 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) } |
24 |
21 22 23
|
3eqtr4i |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 , 𝑤 ∈ 𝐵 ↦ 𝐸 ) |