Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmpox.1 |
⊢ Ⅎ 𝑧 𝐵 |
2 |
|
cbvmpox.2 |
⊢ Ⅎ 𝑥 𝐷 |
3 |
|
cbvmpox.3 |
⊢ Ⅎ 𝑧 𝐶 |
4 |
|
cbvmpox.4 |
⊢ Ⅎ 𝑤 𝐶 |
5 |
|
cbvmpox.5 |
⊢ Ⅎ 𝑥 𝐸 |
6 |
|
cbvmpox.6 |
⊢ Ⅎ 𝑦 𝐸 |
7 |
|
cbvmpox.7 |
⊢ ( 𝑥 = 𝑧 → 𝐵 = 𝐷 ) |
8 |
|
cbvmpox.8 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝐶 = 𝐸 ) |
9 |
|
nfv |
⊢ Ⅎ 𝑧 𝑥 ∈ 𝐴 |
10 |
1
|
nfcri |
⊢ Ⅎ 𝑧 𝑦 ∈ 𝐵 |
11 |
9 10
|
nfan |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
12 |
3
|
nfeq2 |
⊢ Ⅎ 𝑧 𝑢 = 𝐶 |
13 |
11 12
|
nfan |
⊢ Ⅎ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) |
14 |
|
nfv |
⊢ Ⅎ 𝑤 𝑥 ∈ 𝐴 |
15 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐵 |
16 |
15
|
nfcri |
⊢ Ⅎ 𝑤 𝑦 ∈ 𝐵 |
17 |
14 16
|
nfan |
⊢ Ⅎ 𝑤 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
18 |
4
|
nfeq2 |
⊢ Ⅎ 𝑤 𝑢 = 𝐶 |
19 |
17 18
|
nfan |
⊢ Ⅎ 𝑤 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) |
20 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 |
21 |
2
|
nfcri |
⊢ Ⅎ 𝑥 𝑤 ∈ 𝐷 |
22 |
20 21
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) |
23 |
5
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑢 = 𝐸 |
24 |
22 23
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) |
25 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) |
26 |
6
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑢 = 𝐸 |
27 |
25 26
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) |
28 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
30 |
7
|
eleq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐷 ) ) |
31 |
|
eleq1w |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝐷 ↔ 𝑤 ∈ 𝐷 ) ) |
32 |
30 31
|
sylan9bb |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐷 ) ) |
33 |
29 32
|
anbi12d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ) ) |
34 |
8
|
eqeq2d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑢 = 𝐶 ↔ 𝑢 = 𝐸 ) ) |
35 |
33 34
|
anbi12d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) ) ) |
36 |
13 19 24 27 35
|
cbvoprab12 |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) } = { 〈 〈 𝑧 , 𝑤 〉 , 𝑢 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) } |
37 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) } |
38 |
|
df-mpo |
⊢ ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐷 ↦ 𝐸 ) = { 〈 〈 𝑧 , 𝑤 〉 , 𝑢 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) } |
39 |
36 37 38
|
3eqtr4i |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐷 ↦ 𝐸 ) |