| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvmpox.1 | ⊢ Ⅎ 𝑧 𝐵 | 
						
							| 2 |  | cbvmpox.2 | ⊢ Ⅎ 𝑥 𝐷 | 
						
							| 3 |  | cbvmpox.3 | ⊢ Ⅎ 𝑧 𝐶 | 
						
							| 4 |  | cbvmpox.4 | ⊢ Ⅎ 𝑤 𝐶 | 
						
							| 5 |  | cbvmpox.5 | ⊢ Ⅎ 𝑥 𝐸 | 
						
							| 6 |  | cbvmpox.6 | ⊢ Ⅎ 𝑦 𝐸 | 
						
							| 7 |  | cbvmpox.7 | ⊢ ( 𝑥  =  𝑧  →  𝐵  =  𝐷 ) | 
						
							| 8 |  | cbvmpox.8 | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝐶  =  𝐸 ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑧 𝑥  ∈  𝐴 | 
						
							| 10 | 1 | nfcri | ⊢ Ⅎ 𝑧 𝑦  ∈  𝐵 | 
						
							| 11 | 9 10 | nfan | ⊢ Ⅎ 𝑧 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) | 
						
							| 12 | 3 | nfeq2 | ⊢ Ⅎ 𝑧 𝑢  =  𝐶 | 
						
							| 13 | 11 12 | nfan | ⊢ Ⅎ 𝑧 ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  𝑢  =  𝐶 ) | 
						
							| 14 |  | nfv | ⊢ Ⅎ 𝑤 𝑥  ∈  𝐴 | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑤 𝐵 | 
						
							| 16 | 15 | nfcri | ⊢ Ⅎ 𝑤 𝑦  ∈  𝐵 | 
						
							| 17 | 14 16 | nfan | ⊢ Ⅎ 𝑤 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) | 
						
							| 18 | 4 | nfeq2 | ⊢ Ⅎ 𝑤 𝑢  =  𝐶 | 
						
							| 19 | 17 18 | nfan | ⊢ Ⅎ 𝑤 ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  𝑢  =  𝐶 ) | 
						
							| 20 |  | nfv | ⊢ Ⅎ 𝑥 𝑧  ∈  𝐴 | 
						
							| 21 | 2 | nfcri | ⊢ Ⅎ 𝑥 𝑤  ∈  𝐷 | 
						
							| 22 | 20 21 | nfan | ⊢ Ⅎ 𝑥 ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐷 ) | 
						
							| 23 | 5 | nfeq2 | ⊢ Ⅎ 𝑥 𝑢  =  𝐸 | 
						
							| 24 | 22 23 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐷 )  ∧  𝑢  =  𝐸 ) | 
						
							| 25 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐷 ) | 
						
							| 26 | 6 | nfeq2 | ⊢ Ⅎ 𝑦 𝑢  =  𝐸 | 
						
							| 27 | 25 26 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐷 )  ∧  𝑢  =  𝐸 ) | 
						
							| 28 |  | eleq1w | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 30 | 7 | eleq2d | ⊢ ( 𝑥  =  𝑧  →  ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  𝐷 ) ) | 
						
							| 31 |  | eleq1w | ⊢ ( 𝑦  =  𝑤  →  ( 𝑦  ∈  𝐷  ↔  𝑤  ∈  𝐷 ) ) | 
						
							| 32 | 30 31 | sylan9bb | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( 𝑦  ∈  𝐵  ↔  𝑤  ∈  𝐷 ) ) | 
						
							| 33 | 29 32 | anbi12d | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐷 ) ) ) | 
						
							| 34 | 8 | eqeq2d | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( 𝑢  =  𝐶  ↔  𝑢  =  𝐸 ) ) | 
						
							| 35 | 33 34 | anbi12d | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  𝑢  =  𝐶 )  ↔  ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐷 )  ∧  𝑢  =  𝐸 ) ) ) | 
						
							| 36 | 13 19 24 27 35 | cbvoprab12 | ⊢ { 〈 〈 𝑥 ,  𝑦 〉 ,  𝑢 〉  ∣  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  𝑢  =  𝐶 ) }  =  { 〈 〈 𝑧 ,  𝑤 〉 ,  𝑢 〉  ∣  ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐷 )  ∧  𝑢  =  𝐸 ) } | 
						
							| 37 |  | df-mpo | ⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐶 )  =  { 〈 〈 𝑥 ,  𝑦 〉 ,  𝑢 〉  ∣  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  𝑢  =  𝐶 ) } | 
						
							| 38 |  | df-mpo | ⊢ ( 𝑧  ∈  𝐴 ,  𝑤  ∈  𝐷  ↦  𝐸 )  =  { 〈 〈 𝑧 ,  𝑤 〉 ,  𝑢 〉  ∣  ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐷 )  ∧  𝑢  =  𝐸 ) } | 
						
							| 39 | 36 37 38 | 3eqtr4i | ⊢ ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐶 )  =  ( 𝑧  ∈  𝐴 ,  𝑤  ∈  𝐷  ↦  𝐸 ) |