| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvmpox.1 |
⊢ Ⅎ 𝑧 𝐵 |
| 2 |
|
cbvmpox.2 |
⊢ Ⅎ 𝑥 𝐷 |
| 3 |
|
cbvmpox.3 |
⊢ Ⅎ 𝑧 𝐶 |
| 4 |
|
cbvmpox.4 |
⊢ Ⅎ 𝑤 𝐶 |
| 5 |
|
cbvmpox.5 |
⊢ Ⅎ 𝑥 𝐸 |
| 6 |
|
cbvmpox.6 |
⊢ Ⅎ 𝑦 𝐸 |
| 7 |
|
cbvmpox.7 |
⊢ ( 𝑥 = 𝑧 → 𝐵 = 𝐷 ) |
| 8 |
|
cbvmpox.8 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝐶 = 𝐸 ) |
| 9 |
|
nfv |
⊢ Ⅎ 𝑧 𝑥 ∈ 𝐴 |
| 10 |
1
|
nfcri |
⊢ Ⅎ 𝑧 𝑦 ∈ 𝐵 |
| 11 |
9 10
|
nfan |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
| 12 |
3
|
nfeq2 |
⊢ Ⅎ 𝑧 𝑢 = 𝐶 |
| 13 |
11 12
|
nfan |
⊢ Ⅎ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) |
| 14 |
|
nfv |
⊢ Ⅎ 𝑤 𝑥 ∈ 𝐴 |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐵 |
| 16 |
15
|
nfcri |
⊢ Ⅎ 𝑤 𝑦 ∈ 𝐵 |
| 17 |
14 16
|
nfan |
⊢ Ⅎ 𝑤 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
| 18 |
4
|
nfeq2 |
⊢ Ⅎ 𝑤 𝑢 = 𝐶 |
| 19 |
17 18
|
nfan |
⊢ Ⅎ 𝑤 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) |
| 20 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 |
| 21 |
2
|
nfcri |
⊢ Ⅎ 𝑥 𝑤 ∈ 𝐷 |
| 22 |
20 21
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) |
| 23 |
5
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑢 = 𝐸 |
| 24 |
22 23
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) |
| 25 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) |
| 26 |
6
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑢 = 𝐸 |
| 27 |
25 26
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) |
| 28 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 30 |
7
|
eleq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐷 ) ) |
| 31 |
|
eleq1w |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝐷 ↔ 𝑤 ∈ 𝐷 ) ) |
| 32 |
30 31
|
sylan9bb |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐷 ) ) |
| 33 |
29 32
|
anbi12d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ) ) |
| 34 |
8
|
eqeq2d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑢 = 𝐶 ↔ 𝑢 = 𝐸 ) ) |
| 35 |
33 34
|
anbi12d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) ) ) |
| 36 |
13 19 24 27 35
|
cbvoprab12 |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) } = { 〈 〈 𝑧 , 𝑤 〉 , 𝑢 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) } |
| 37 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) } |
| 38 |
|
df-mpo |
⊢ ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐷 ↦ 𝐸 ) = { 〈 〈 𝑧 , 𝑤 〉 , 𝑢 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐷 ) ∧ 𝑢 = 𝐸 ) } |
| 39 |
36 37 38
|
3eqtr4i |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ 𝐴 , 𝑤 ∈ 𝐷 ↦ 𝐸 ) |