| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvmptf.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
cbvmptf.2 |
⊢ Ⅎ 𝑦 𝐴 |
| 3 |
|
cbvmptf.3 |
⊢ Ⅎ 𝑦 𝐵 |
| 4 |
|
cbvmptf.4 |
⊢ Ⅎ 𝑥 𝐶 |
| 5 |
|
cbvmptf.5 |
⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) |
| 7 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑤 ∈ 𝐴 |
| 8 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 |
| 9 |
7 8
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) |
| 10 |
|
eleq1w |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) |
| 11 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑤 → ( 𝑧 = 𝐵 ↔ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) ) |
| 12 |
10 11
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) ↔ ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) ) ) |
| 13 |
6 9 12
|
cbvopab1 |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) } = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) } |
| 14 |
2
|
nfcri |
⊢ Ⅎ 𝑦 𝑤 ∈ 𝐴 |
| 15 |
3
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑧 = 𝐵 |
| 16 |
15
|
nfsbv |
⊢ Ⅎ 𝑦 [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 |
| 17 |
14 16
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) |
| 18 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) |
| 19 |
|
eleq1w |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 20 |
|
sbequ |
⊢ ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ↔ [ 𝑦 / 𝑥 ] 𝑧 = 𝐵 ) ) |
| 21 |
4
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑧 = 𝐶 |
| 22 |
5
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = 𝐵 ↔ 𝑧 = 𝐶 ) ) |
| 23 |
21 22
|
sbiev |
⊢ ( [ 𝑦 / 𝑥 ] 𝑧 = 𝐵 ↔ 𝑧 = 𝐶 ) |
| 24 |
20 23
|
bitrdi |
⊢ ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ↔ 𝑧 = 𝐶 ) ) |
| 25 |
19 24
|
anbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) ) ) |
| 26 |
17 18 25
|
cbvopab1 |
⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) } |
| 27 |
13 26
|
eqtri |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) } |
| 28 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) } |
| 29 |
|
df-mpt |
⊢ ( 𝑦 ∈ 𝐴 ↦ 𝐶 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) } |
| 30 |
27 28 29
|
3eqtr4i |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑦 ∈ 𝐴 ↦ 𝐶 ) |