Step |
Hyp |
Ref |
Expression |
1 |
|
cbvmptf.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
cbvmptf.2 |
⊢ Ⅎ 𝑦 𝐴 |
3 |
|
cbvmptf.3 |
⊢ Ⅎ 𝑦 𝐵 |
4 |
|
cbvmptf.4 |
⊢ Ⅎ 𝑥 𝐶 |
5 |
|
cbvmptf.5 |
⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) |
6 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) |
7 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑤 ∈ 𝐴 |
8 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 |
9 |
7 8
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) |
10 |
|
eleq1w |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) |
11 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑤 → ( 𝑧 = 𝐵 ↔ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) ) |
12 |
10 11
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) ↔ ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) ) ) |
13 |
6 9 12
|
cbvopab1 |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) } = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) } |
14 |
2
|
nfcri |
⊢ Ⅎ 𝑦 𝑤 ∈ 𝐴 |
15 |
3
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑧 = 𝐵 |
16 |
15
|
nfsbv |
⊢ Ⅎ 𝑦 [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 |
17 |
14 16
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) |
18 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) |
19 |
|
eleq1w |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
20 |
|
sbequ |
⊢ ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ↔ [ 𝑦 / 𝑥 ] 𝑧 = 𝐵 ) ) |
21 |
4
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑧 = 𝐶 |
22 |
5
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 = 𝐵 ↔ 𝑧 = 𝐶 ) ) |
23 |
21 22
|
sbiev |
⊢ ( [ 𝑦 / 𝑥 ] 𝑧 = 𝐵 ↔ 𝑧 = 𝐶 ) |
24 |
20 23
|
bitrdi |
⊢ ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ↔ 𝑧 = 𝐶 ) ) |
25 |
19 24
|
anbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) ) ) |
26 |
17 18 25
|
cbvopab1 |
⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) } |
27 |
13 26
|
eqtri |
⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) } |
28 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) } |
29 |
|
df-mpt |
⊢ ( 𝑦 ∈ 𝐴 ↦ 𝐶 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) } |
30 |
27 28 29
|
3eqtr4i |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑦 ∈ 𝐴 ↦ 𝐶 ) |