Metamath Proof Explorer


Theorem cbvopabv

Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024)

Ref Expression
Hypothesis cbvopabv.1 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( 𝜑𝜓 ) )
Assertion cbvopabv { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜓 }

Proof

Step Hyp Ref Expression
1 cbvopabv.1 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( 𝜑𝜓 ) )
2 opeq12 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑧 , 𝑤 ⟩ )
3 2 eqeq2d ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( 𝑣 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑣 = ⟨ 𝑧 , 𝑤 ⟩ ) )
4 3 1 anbi12d ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( ( 𝑣 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ( 𝑣 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝜓 ) ) )
5 4 cbvex2vw ( ∃ 𝑥𝑦 ( 𝑣 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑧𝑤 ( 𝑣 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝜓 ) )
6 5 abbii { 𝑣 ∣ ∃ 𝑥𝑦 ( 𝑣 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) } = { 𝑣 ∣ ∃ 𝑧𝑤 ( 𝑣 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝜓 ) }
7 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { 𝑣 ∣ ∃ 𝑥𝑦 ( 𝑣 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) }
8 df-opab { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜓 } = { 𝑣 ∣ ∃ 𝑧𝑤 ( 𝑣 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝜓 ) }
9 6 7 8 3eqtr4i { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { ⟨ 𝑧 , 𝑤 ⟩ ∣ 𝜓 }