| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvprod.1 | ⊢ ( 𝑗  =  𝑘  →  𝐵  =  𝐶 ) | 
						
							| 2 |  | cbvprod.2 | ⊢ Ⅎ 𝑘 𝐴 | 
						
							| 3 |  | cbvprod.3 | ⊢ Ⅎ 𝑗 𝐴 | 
						
							| 4 |  | cbvprod.4 | ⊢ Ⅎ 𝑘 𝐵 | 
						
							| 5 |  | cbvprod.5 | ⊢ Ⅎ 𝑗 𝐶 | 
						
							| 6 |  | biid | ⊢ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ↔  𝐴  ⊆  ( ℤ≥ ‘ 𝑚 ) ) | 
						
							| 7 | 2 | nfcri | ⊢ Ⅎ 𝑘 𝑗  ∈  𝐴 | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑘 1 | 
						
							| 9 | 7 4 8 | nfif | ⊢ Ⅎ 𝑘 if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) | 
						
							| 10 | 3 | nfcri | ⊢ Ⅎ 𝑗 𝑘  ∈  𝐴 | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑗 1 | 
						
							| 12 | 10 5 11 | nfif | ⊢ Ⅎ 𝑗 if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) | 
						
							| 13 |  | eleq1w | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  ∈  𝐴  ↔  𝑘  ∈  𝐴 ) ) | 
						
							| 14 | 13 1 | ifbieq1d | ⊢ ( 𝑗  =  𝑘  →  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 )  =  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) | 
						
							| 15 | 9 12 14 | cbvmpt | ⊢ ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) )  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) | 
						
							| 16 |  | seqeq3 | ⊢ ( ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) )  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) )  →  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  =  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) ) ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  =  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) ) | 
						
							| 18 | 17 | breq1i | ⊢ ( seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦  ↔  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) | 
						
							| 19 | 18 | anbi2i | ⊢ ( ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ↔  ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) | 
						
							| 20 | 19 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ↔  ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) | 
						
							| 21 | 20 | rexbii | ⊢ ( ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ↔  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) | 
						
							| 22 |  | seqeq3 | ⊢ ( ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) )  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) )  →  seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  =  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) ) ) | 
						
							| 23 | 15 22 | ax-mp | ⊢ seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  =  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) ) | 
						
							| 24 | 23 | breq1i | ⊢ ( seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥  ↔  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 ) | 
						
							| 25 | 6 21 24 | 3anbi123i | ⊢ ( ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ↔  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 ) ) | 
						
							| 26 | 25 | rexbii | ⊢ ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ↔  ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 ) ) | 
						
							| 27 | 4 5 1 | cbvcsbw | ⊢ ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵  =  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 | 
						
							| 28 | 27 | mpteq2i | ⊢ ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 )  =  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 29 |  | seqeq3 | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 )  =  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 )  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) )  =  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) )  =  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 31 | 30 | fveq1i | ⊢ ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 )  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) | 
						
							| 32 | 31 | eqeq2i | ⊢ ( 𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 )  ↔  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) | 
						
							| 33 | 32 | anbi2i | ⊢ ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) )  ↔  ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) | 
						
							| 34 | 33 | exbii | ⊢ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) )  ↔  ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) | 
						
							| 35 | 34 | rexbii | ⊢ ( ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) )  ↔  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) | 
						
							| 36 | 26 35 | orbi12i | ⊢ ( ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) )  ↔  ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 37 | 36 | iotabii | ⊢ ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) )  =  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 38 |  | df-prod | ⊢ ∏ 𝑗  ∈  𝐴 𝐵  =  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 39 |  | df-prod | ⊢ ∏ 𝑘  ∈  𝐴 𝐶  =  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 40 | 37 38 39 | 3eqtr4i | ⊢ ∏ 𝑗  ∈  𝐴 𝐵  =  ∏ 𝑘  ∈  𝐴 𝐶 |