Step |
Hyp |
Ref |
Expression |
1 |
|
cbvprod.1 |
⊢ ( 𝑗 = 𝑘 → 𝐵 = 𝐶 ) |
2 |
|
cbvprod.2 |
⊢ Ⅎ 𝑘 𝐴 |
3 |
|
cbvprod.3 |
⊢ Ⅎ 𝑗 𝐴 |
4 |
|
cbvprod.4 |
⊢ Ⅎ 𝑘 𝐵 |
5 |
|
cbvprod.5 |
⊢ Ⅎ 𝑗 𝐶 |
6 |
|
biid |
⊢ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ↔ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) |
7 |
2
|
nfcri |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝐴 |
8 |
|
nfcv |
⊢ Ⅎ 𝑘 1 |
9 |
7 4 8
|
nfif |
⊢ Ⅎ 𝑘 if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) |
10 |
3
|
nfcri |
⊢ Ⅎ 𝑗 𝑘 ∈ 𝐴 |
11 |
|
nfcv |
⊢ Ⅎ 𝑗 1 |
12 |
10 5 11
|
nfif |
⊢ Ⅎ 𝑗 if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) |
13 |
|
eleq1w |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴 ) ) |
14 |
13 1
|
ifbieq1d |
⊢ ( 𝑗 = 𝑘 → if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) = if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) |
15 |
9 12 14
|
cbvmpt |
⊢ ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) |
16 |
|
seqeq3 |
⊢ ( ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) → seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) = seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ) |
17 |
15 16
|
ax-mp |
⊢ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) = seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) |
18 |
17
|
breq1i |
⊢ ( seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ↔ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) |
19 |
18
|
anbi2i |
⊢ ( ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ↔ ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) |
20 |
19
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) |
21 |
20
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ↔ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ) |
22 |
|
seqeq3 |
⊢ ( ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) → seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) = seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ) |
23 |
15 22
|
ax-mp |
⊢ seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) = seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) |
24 |
23
|
breq1i |
⊢ ( seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ↔ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) |
25 |
6 21 24
|
3anbi123i |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ) |
26 |
25
|
rexbii |
⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ) |
27 |
4 5 1
|
cbvcsbw |
⊢ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 |
28 |
27
|
mpteq2i |
⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐵 ) = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) |
29 |
|
seqeq3 |
⊢ ( ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐵 ) = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐵 ) ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ) |
30 |
28 29
|
ax-mp |
⊢ seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐵 ) ) = seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) |
31 |
30
|
fveq1i |
⊢ ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) |
32 |
31
|
eqeq2i |
⊢ ( 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) ↔ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) |
33 |
32
|
anbi2i |
⊢ ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) |
34 |
33
|
exbii |
⊢ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) |
35 |
34
|
rexbii |
⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) |
36 |
26 35
|
orbi12i |
⊢ ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
37 |
36
|
iotabii |
⊢ ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
38 |
|
df-prod |
⊢ ∏ 𝑗 ∈ 𝐴 𝐵 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑗 ∈ ℤ ↦ if ( 𝑗 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
39 |
|
df-prod |
⊢ ∏ 𝑘 ∈ 𝐴 𝐶 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐶 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) |
40 |
37 38 39
|
3eqtr4i |
⊢ ∏ 𝑗 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐶 |