Metamath Proof Explorer


Theorem cbvprodi

Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses cbvprodi.1 𝑘 𝐵
cbvprodi.2 𝑗 𝐶
cbvprodi.3 ( 𝑗 = 𝑘𝐵 = 𝐶 )
Assertion cbvprodi 𝑗𝐴 𝐵 = ∏ 𝑘𝐴 𝐶

Proof

Step Hyp Ref Expression
1 cbvprodi.1 𝑘 𝐵
2 cbvprodi.2 𝑗 𝐶
3 cbvprodi.3 ( 𝑗 = 𝑘𝐵 = 𝐶 )
4 nfcv 𝑘 𝐴
5 nfcv 𝑗 𝐴
6 3 4 5 1 2 cbvprod 𝑗𝐴 𝐵 = ∏ 𝑘𝐴 𝐶