Metamath Proof Explorer
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017)
|
|
Ref |
Expression |
|
Hypotheses |
cbvprodi.1 |
⊢ Ⅎ 𝑘 𝐵 |
|
|
cbvprodi.2 |
⊢ Ⅎ 𝑗 𝐶 |
|
|
cbvprodi.3 |
⊢ ( 𝑗 = 𝑘 → 𝐵 = 𝐶 ) |
|
Assertion |
cbvprodi |
⊢ ∏ 𝑗 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐶 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cbvprodi.1 |
⊢ Ⅎ 𝑘 𝐵 |
2 |
|
cbvprodi.2 |
⊢ Ⅎ 𝑗 𝐶 |
3 |
|
cbvprodi.3 |
⊢ ( 𝑗 = 𝑘 → 𝐵 = 𝐶 ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
5 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐴 |
6 |
3 4 5 1 2
|
cbvprod |
⊢ ∏ 𝑗 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐶 |