Metamath Proof Explorer
		
		
		
		Description:  Change bound variable in a product.  (Contributed by Scott Fenton, 4-Dec-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | cbvprodi.1 | ⊢ Ⅎ 𝑘 𝐵 | 
					
						|  |  | cbvprodi.2 | ⊢ Ⅎ 𝑗 𝐶 | 
					
						|  |  | cbvprodi.3 | ⊢ ( 𝑗  =  𝑘  →  𝐵  =  𝐶 ) | 
				
					|  | Assertion | cbvprodi | ⊢  ∏ 𝑗  ∈  𝐴 𝐵  =  ∏ 𝑘  ∈  𝐴 𝐶 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvprodi.1 | ⊢ Ⅎ 𝑘 𝐵 | 
						
							| 2 |  | cbvprodi.2 | ⊢ Ⅎ 𝑗 𝐶 | 
						
							| 3 |  | cbvprodi.3 | ⊢ ( 𝑗  =  𝑘  →  𝐵  =  𝐶 ) | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑘 𝐴 | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑗 𝐴 | 
						
							| 6 | 3 4 5 1 2 | cbvprod | ⊢ ∏ 𝑗  ∈  𝐴 𝐵  =  ∏ 𝑘  ∈  𝐴 𝐶 |