| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvprod.1 | ⊢ ( 𝑗  =  𝑘  →  𝐵  =  𝐶 ) | 
						
							| 2 |  | biid | ⊢ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ↔  𝐴  ⊆  ( ℤ≥ ‘ 𝑚 ) ) | 
						
							| 3 |  | eleq1w | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  ∈  𝐴  ↔  𝑘  ∈  𝐴 ) ) | 
						
							| 4 | 3 1 | ifbieq1d | ⊢ ( 𝑗  =  𝑘  →  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 )  =  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) | 
						
							| 5 | 4 | cbvmptv | ⊢ ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) )  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) | 
						
							| 6 |  | seqeq3 | ⊢ ( ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) )  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) )  →  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  =  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  =  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) ) | 
						
							| 8 | 7 | breq1i | ⊢ ( seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦  ↔  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) | 
						
							| 9 | 8 | anbi2i | ⊢ ( ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ↔  ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) | 
						
							| 10 | 9 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ↔  ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) | 
						
							| 11 | 10 | rexbii | ⊢ ( ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ↔  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 ) ) | 
						
							| 12 |  | seqeq3 | ⊢ ( ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) )  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) )  →  seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  =  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) ) ) | 
						
							| 13 | 5 12 | ax-mp | ⊢ seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  =  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) ) | 
						
							| 14 | 13 | breq1i | ⊢ ( seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥  ↔  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 ) | 
						
							| 15 | 2 11 14 | 3anbi123i | ⊢ ( ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ↔  ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 ) ) | 
						
							| 16 | 15 | rexbii | ⊢ ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ↔  ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 ) ) | 
						
							| 17 | 1 | cbvcsbv | ⊢ ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵  =  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 | 
						
							| 18 | 17 | mpteq2i | ⊢ ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 )  =  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) | 
						
							| 19 |  | seqeq3 | ⊢ ( ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 )  =  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 )  →  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) )  =  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) )  =  seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 21 | 20 | fveq1i | ⊢ ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 )  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) | 
						
							| 22 | 21 | eqeq2i | ⊢ ( 𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 )  ↔  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) | 
						
							| 23 | 22 | anbi2i | ⊢ ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) )  ↔  ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) | 
						
							| 24 | 23 | exbii | ⊢ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) )  ↔  ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) | 
						
							| 25 | 24 | rexbii | ⊢ ( ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) )  ↔  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) | 
						
							| 26 | 16 25 | orbi12i | ⊢ ( ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) )  ↔  ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 27 | 26 | iotabii | ⊢ ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) )  =  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 28 |  | df-prod | ⊢ ∏ 𝑗  ∈  𝐴 𝐵  =  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑗  ∈  ℤ  ↦  if ( 𝑗  ∈  𝐴 ,  𝐵 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑗 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 29 |  | df-prod | ⊢ ∏ 𝑘  ∈  𝐴 𝐶  =  ( ℩ 𝑥 ( ∃ 𝑚  ∈  ℤ ( 𝐴  ⊆  ( ℤ≥ ‘ 𝑚 )  ∧  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦  ≠  0  ∧  seq 𝑛 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑦 )  ∧  seq 𝑚 (  ·  ,  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐶 ,  1 ) ) )  ⇝  𝑥 )  ∨  ∃ 𝑚  ∈  ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴  ∧  𝑥  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  ⦋ ( 𝑓 ‘ 𝑛 )  /  𝑘 ⦌ 𝐶 ) ) ‘ 𝑚 ) ) ) ) | 
						
							| 30 | 27 28 29 | 3eqtr4i | ⊢ ∏ 𝑗  ∈  𝐴 𝐵  =  ∏ 𝑘  ∈  𝐴 𝐶 |