Metamath Proof Explorer


Theorem cbvprodv

Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypothesis cbvprod.1 ( 𝑗 = 𝑘𝐵 = 𝐶 )
Assertion cbvprodv 𝑗𝐴 𝐵 = ∏ 𝑘𝐴 𝐶

Proof

Step Hyp Ref Expression
1 cbvprod.1 ( 𝑗 = 𝑘𝐵 = 𝐶 )
2 nfcv 𝑘 𝐴
3 nfcv 𝑗 𝐴
4 nfcv 𝑘 𝐵
5 nfcv 𝑗 𝐶
6 1 2 3 4 5 cbvprod 𝑗𝐴 𝐵 = ∏ 𝑘𝐴 𝐶