Metamath Proof Explorer
Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017)
|
|
Ref |
Expression |
|
Hypothesis |
cbvprod.1 |
⊢ ( 𝑗 = 𝑘 → 𝐵 = 𝐶 ) |
|
Assertion |
cbvprodv |
⊢ ∏ 𝑗 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐶 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cbvprod.1 |
⊢ ( 𝑗 = 𝑘 → 𝐵 = 𝐶 ) |
2 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
3 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐴 |
4 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐵 |
5 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐶 |
6 |
1 2 3 4 5
|
cbvprod |
⊢ ∏ 𝑗 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐶 |