Metamath Proof Explorer


Theorem cbvrabv

Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999) Require x , y be disjoint to avoid ax-11 and ax-13 . (Revised by Steven Nguyen, 4-Dec-2022)

Ref Expression
Hypothesis cbvrabv.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvrabv { 𝑥𝐴𝜑 } = { 𝑦𝐴𝜓 }

Proof

Step Hyp Ref Expression
1 cbvrabv.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
3 2 1 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑦𝐴𝜓 ) ) )
4 3 cbvabv { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = { 𝑦 ∣ ( 𝑦𝐴𝜓 ) }
5 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
6 df-rab { 𝑦𝐴𝜓 } = { 𝑦 ∣ ( 𝑦𝐴𝜓 ) }
7 4 5 6 3eqtr4i { 𝑥𝐴𝜑 } = { 𝑦𝐴𝜓 }