Metamath Proof Explorer


Theorem cbvrabv2w

Description: A more general version of cbvrabv . Version of cbvrabv2 with a disjoint variable condition, which does not require ax-13 . (Contributed by Glauco Siliprandi, 23-Oct-2021) (Revised by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvrabv2w.1 ( 𝑥 = 𝑦𝐴 = 𝐵 )
cbvrabv2w.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvrabv2w { 𝑥𝐴𝜑 } = { 𝑦𝐵𝜓 }

Proof

Step Hyp Ref Expression
1 cbvrabv2w.1 ( 𝑥 = 𝑦𝐴 = 𝐵 )
2 cbvrabv2w.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
3 id ( 𝑥 = 𝑦𝑥 = 𝑦 )
4 3 1 eleq12d ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐵 ) )
5 4 2 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑦𝐵𝜓 ) ) )
6 5 cbvabv { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = { 𝑦 ∣ ( 𝑦𝐵𝜓 ) }
7 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
8 df-rab { 𝑦𝐵𝜓 } = { 𝑦 ∣ ( 𝑦𝐵𝜓 ) }
9 6 7 8 3eqtr4i { 𝑥𝐴𝜑 } = { 𝑦𝐵𝜓 }