Metamath Proof Explorer


Theorem cbvrabw

Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. Version of cbvrab with a disjoint variable condition, which does not require ax-13 . (Contributed by Andrew Salmon, 11-Jul-2011) Avoid ax-13 . (Revised by GG, 10-Jan-2024) Avoid ax-10 . (Revised by Wolf Lammen, 19-Jul-2025)

Ref Expression
Hypotheses cbvrabw.1 𝑥 𝐴
cbvrabw.2 𝑦 𝐴
cbvrabw.3 𝑦 𝜑
cbvrabw.4 𝑥 𝜓
cbvrabw.5 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvrabw { 𝑥𝐴𝜑 } = { 𝑦𝐴𝜓 }

Proof

Step Hyp Ref Expression
1 cbvrabw.1 𝑥 𝐴
2 cbvrabw.2 𝑦 𝐴
3 cbvrabw.3 𝑦 𝜑
4 cbvrabw.4 𝑥 𝜓
5 cbvrabw.5 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
6 2 nfcri 𝑦 𝑥𝐴
7 6 3 nfan 𝑦 ( 𝑥𝐴𝜑 )
8 1 nfcri 𝑥 𝑦𝐴
9 8 4 nfan 𝑥 ( 𝑦𝐴𝜓 )
10 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
11 10 5 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑦𝐴𝜓 ) ) )
12 7 9 11 cbvabw { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } = { 𝑦 ∣ ( 𝑦𝐴𝜓 ) }
13 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
14 df-rab { 𝑦𝐴𝜓 } = { 𝑦 ∣ ( 𝑦𝐴𝜓 ) }
15 12 13 14 3eqtr4i { 𝑥𝐴𝜑 } = { 𝑦𝐴𝜓 }