Step |
Hyp |
Ref |
Expression |
1 |
|
cbvrabw.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
cbvrabw.2 |
⊢ Ⅎ 𝑦 𝐴 |
3 |
|
cbvrabw.3 |
⊢ Ⅎ 𝑦 𝜑 |
4 |
|
cbvrabw.4 |
⊢ Ⅎ 𝑥 𝜓 |
5 |
|
cbvrabw.5 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
6 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
7 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 |
8 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 |
9 |
7 8
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) |
10 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
11 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
12 |
10 11
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
13 |
6 9 12
|
cbvabw |
⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) } |
14 |
2
|
nfcri |
⊢ Ⅎ 𝑦 𝑧 ∈ 𝐴 |
15 |
3
|
nfsbv |
⊢ Ⅎ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 |
16 |
14 15
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) |
17 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) |
18 |
|
eleq1w |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
19 |
|
sbequ |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
20 |
4 5
|
sbiev |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
21 |
19 20
|
bitrdi |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
22 |
18 21
|
anbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
23 |
16 17 22
|
cbvabw |
⊢ { 𝑧 ∣ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) } |
24 |
13 23
|
eqtri |
⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) } |
25 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } |
26 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝜓 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) } |
27 |
24 25 26
|
3eqtr4i |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑦 ∈ 𝐴 ∣ 𝜓 } |