Metamath Proof Explorer


Theorem cbvral2v

Description: Change bound variables of double restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvral2vw when possible. (Contributed by NM, 10-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses cbvral2v.1 ( 𝑥 = 𝑧 → ( 𝜑𝜒 ) )
cbvral2v.2 ( 𝑦 = 𝑤 → ( 𝜒𝜓 ) )
Assertion cbvral2v ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑧𝐴𝑤𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvral2v.1 ( 𝑥 = 𝑧 → ( 𝜑𝜒 ) )
2 cbvral2v.2 ( 𝑦 = 𝑤 → ( 𝜒𝜓 ) )
3 1 ralbidv ( 𝑥 = 𝑧 → ( ∀ 𝑦𝐵 𝜑 ↔ ∀ 𝑦𝐵 𝜒 ) )
4 3 cbvralv ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑧𝐴𝑦𝐵 𝜒 )
5 2 cbvralv ( ∀ 𝑦𝐵 𝜒 ↔ ∀ 𝑤𝐵 𝜓 )
6 5 ralbii ( ∀ 𝑧𝐴𝑦𝐵 𝜒 ↔ ∀ 𝑧𝐴𝑤𝐵 𝜓 )
7 4 6 bitri ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑧𝐴𝑤𝐵 𝜓 )