Metamath Proof Explorer


Theorem cbvral2vw

Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-Aug-2004) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvral2vw.1 ( 𝑥 = 𝑧 → ( 𝜑𝜒 ) )
cbvral2vw.2 ( 𝑦 = 𝑤 → ( 𝜒𝜓 ) )
Assertion cbvral2vw ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑧𝐴𝑤𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvral2vw.1 ( 𝑥 = 𝑧 → ( 𝜑𝜒 ) )
2 cbvral2vw.2 ( 𝑦 = 𝑤 → ( 𝜒𝜓 ) )
3 1 ralbidv ( 𝑥 = 𝑧 → ( ∀ 𝑦𝐵 𝜑 ↔ ∀ 𝑦𝐵 𝜒 ) )
4 3 cbvralvw ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑧𝐴𝑦𝐵 𝜒 )
5 2 cbvralvw ( ∀ 𝑦𝐵 𝜒 ↔ ∀ 𝑤𝐵 𝜓 )
6 5 ralbii ( ∀ 𝑧𝐴𝑦𝐵 𝜒 ↔ ∀ 𝑧𝐴𝑤𝐵 𝜓 )
7 4 6 bitri ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑧𝐴𝑤𝐵 𝜓 )