Metamath Proof Explorer


Theorem cbvral3v

Description: Change bound variables of triple restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvral3vw when possible. (Contributed by NM, 10-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cbvral3v.1 ( 𝑥 = 𝑤 → ( 𝜑𝜒 ) )
cbvral3v.2 ( 𝑦 = 𝑣 → ( 𝜒𝜃 ) )
cbvral3v.3 ( 𝑧 = 𝑢 → ( 𝜃𝜓 ) )
Assertion cbvral3v ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀ 𝑤𝐴𝑣𝐵𝑢𝐶 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvral3v.1 ( 𝑥 = 𝑤 → ( 𝜑𝜒 ) )
2 cbvral3v.2 ( 𝑦 = 𝑣 → ( 𝜒𝜃 ) )
3 cbvral3v.3 ( 𝑧 = 𝑢 → ( 𝜃𝜓 ) )
4 1 2ralbidv ( 𝑥 = 𝑤 → ( ∀ 𝑦𝐵𝑧𝐶 𝜑 ↔ ∀ 𝑦𝐵𝑧𝐶 𝜒 ) )
5 4 cbvralv ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀ 𝑤𝐴𝑦𝐵𝑧𝐶 𝜒 )
6 2 3 cbvral2v ( ∀ 𝑦𝐵𝑧𝐶 𝜒 ↔ ∀ 𝑣𝐵𝑢𝐶 𝜓 )
7 6 ralbii ( ∀ 𝑤𝐴𝑦𝐵𝑧𝐶 𝜒 ↔ ∀ 𝑤𝐴𝑣𝐵𝑢𝐶 𝜓 )
8 5 7 bitri ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀ 𝑤𝐴𝑣𝐵𝑢𝐶 𝜓 )