Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted universal and existential quantification cbvral3vw  
				
		 
		
			
		 
		Description:   Change bound variables of triple restricted universal quantification,
       using implicit substitution.  Version of cbvral3v  with a disjoint
       variable condition, which does not require ax-13  .  (Contributed by NM , 10-May-2005)   Avoid ax-13  .  (Revised by GG , 10-Jan-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						cbvral3vw.1 ⊢  ( 𝑥   =  𝑤   →  ( 𝜑   ↔  𝜒  ) )  
					
						cbvral3vw.2 ⊢  ( 𝑦   =  𝑣   →  ( 𝜒   ↔  𝜃  ) )  
					
						cbvral3vw.3 ⊢  ( 𝑧   =  𝑢   →  ( 𝜃   ↔  𝜓  ) )  
				
					Assertion 
					cbvral3vw ⊢   ( ∀ 𝑥   ∈  𝐴  ∀ 𝑦   ∈  𝐵  ∀ 𝑧   ∈  𝐶  𝜑   ↔  ∀ 𝑤   ∈  𝐴  ∀ 𝑣   ∈  𝐵  ∀ 𝑢   ∈  𝐶  𝜓  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							cbvral3vw.1 ⊢  ( 𝑥   =  𝑤   →  ( 𝜑   ↔  𝜒  ) )  
						
							2 
								
							 
							cbvral3vw.2 ⊢  ( 𝑦   =  𝑣   →  ( 𝜒   ↔  𝜃  ) )  
						
							3 
								
							 
							cbvral3vw.3 ⊢  ( 𝑧   =  𝑢   →  ( 𝜃   ↔  𝜓  ) )  
						
							4 
								1 
							 
							2ralbidv ⊢  ( 𝑥   =  𝑤   →  ( ∀ 𝑦   ∈  𝐵  ∀ 𝑧   ∈  𝐶  𝜑   ↔  ∀ 𝑦   ∈  𝐵  ∀ 𝑧   ∈  𝐶  𝜒  ) )  
						
							5 
								4 
							 
							cbvralvw ⊢  ( ∀ 𝑥   ∈  𝐴  ∀ 𝑦   ∈  𝐵  ∀ 𝑧   ∈  𝐶  𝜑   ↔  ∀ 𝑤   ∈  𝐴  ∀ 𝑦   ∈  𝐵  ∀ 𝑧   ∈  𝐶  𝜒  )  
						
							6 
								2  3 
							 
							cbvral2vw ⊢  ( ∀ 𝑦   ∈  𝐵  ∀ 𝑧   ∈  𝐶  𝜒   ↔  ∀ 𝑣   ∈  𝐵  ∀ 𝑢   ∈  𝐶  𝜓  )  
						
							7 
								6 
							 
							ralbii ⊢  ( ∀ 𝑤   ∈  𝐴  ∀ 𝑦   ∈  𝐵  ∀ 𝑧   ∈  𝐶  𝜒   ↔  ∀ 𝑤   ∈  𝐴  ∀ 𝑣   ∈  𝐵  ∀ 𝑢   ∈  𝐶  𝜓  )  
						
							8 
								5  7 
							 
							bitri ⊢  ( ∀ 𝑥   ∈  𝐴  ∀ 𝑦   ∈  𝐵  ∀ 𝑧   ∈  𝐶  𝜑   ↔  ∀ 𝑤   ∈  𝐴  ∀ 𝑣   ∈  𝐵  ∀ 𝑢   ∈  𝐶  𝜓  )