Metamath Proof Explorer


Theorem cbvral6vw

Description: Change bound variables of sextuple restricted universal quantification, using implicit substitution. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Hypotheses cbvral6vw.1 ( 𝑥 = 𝑎 → ( 𝜑𝜒 ) )
cbvral6vw.2 ( 𝑦 = 𝑏 → ( 𝜒𝜃 ) )
cbvral6vw.3 ( 𝑧 = 𝑐 → ( 𝜃𝜏 ) )
cbvral6vw.4 ( 𝑤 = 𝑑 → ( 𝜏𝜂 ) )
cbvral6vw.5 ( 𝑝 = 𝑒 → ( 𝜂𝜁 ) )
cbvral6vw.6 ( 𝑞 = 𝑓 → ( 𝜁𝜓 ) )
Assertion cbvral6vw ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑝𝐸𝑞𝐹 𝜑 ↔ ∀ 𝑎𝐴𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸𝑓𝐹 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvral6vw.1 ( 𝑥 = 𝑎 → ( 𝜑𝜒 ) )
2 cbvral6vw.2 ( 𝑦 = 𝑏 → ( 𝜒𝜃 ) )
3 cbvral6vw.3 ( 𝑧 = 𝑐 → ( 𝜃𝜏 ) )
4 cbvral6vw.4 ( 𝑤 = 𝑑 → ( 𝜏𝜂 ) )
5 cbvral6vw.5 ( 𝑝 = 𝑒 → ( 𝜂𝜁 ) )
6 cbvral6vw.6 ( 𝑞 = 𝑓 → ( 𝜁𝜓 ) )
7 1 2ralbidv ( 𝑥 = 𝑎 → ( ∀ 𝑝𝐸𝑞𝐹 𝜑 ↔ ∀ 𝑝𝐸𝑞𝐹 𝜒 ) )
8 2 2ralbidv ( 𝑦 = 𝑏 → ( ∀ 𝑝𝐸𝑞𝐹 𝜒 ↔ ∀ 𝑝𝐸𝑞𝐹 𝜃 ) )
9 3 2ralbidv ( 𝑧 = 𝑐 → ( ∀ 𝑝𝐸𝑞𝐹 𝜃 ↔ ∀ 𝑝𝐸𝑞𝐹 𝜏 ) )
10 4 2ralbidv ( 𝑤 = 𝑑 → ( ∀ 𝑝𝐸𝑞𝐹 𝜏 ↔ ∀ 𝑝𝐸𝑞𝐹 𝜂 ) )
11 7 8 9 10 cbvral4vw ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑝𝐸𝑞𝐹 𝜑 ↔ ∀ 𝑎𝐴𝑏𝐵𝑐𝐶𝑑𝐷𝑝𝐸𝑞𝐹 𝜂 )
12 5 6 cbvral2vw ( ∀ 𝑝𝐸𝑞𝐹 𝜂 ↔ ∀ 𝑒𝐸𝑓𝐹 𝜓 )
13 12 4ralbii ( ∀ 𝑎𝐴𝑏𝐵𝑐𝐶𝑑𝐷𝑝𝐸𝑞𝐹 𝜂 ↔ ∀ 𝑎𝐴𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸𝑓𝐹 𝜓 )
14 11 13 bitri ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑝𝐸𝑞𝐹 𝜑 ↔ ∀ 𝑎𝐴𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸𝑓𝐹 𝜓 )