Metamath Proof Explorer


Theorem cbvral8vw

Description: Change bound variables of octuple restricted universal quantification, using implicit substitution. (Contributed by Scott Fenton, 2-Mar-2025)

Ref Expression
Hypotheses cbvral8vw.1 ( 𝑥 = 𝑎 → ( 𝜑𝜒 ) )
cbvral8vw.2 ( 𝑦 = 𝑏 → ( 𝜒𝜃 ) )
cbvral8vw.3 ( 𝑧 = 𝑐 → ( 𝜃𝜏 ) )
cbvral8vw.4 ( 𝑤 = 𝑑 → ( 𝜏𝜂 ) )
cbvral8vw.5 ( 𝑝 = 𝑒 → ( 𝜂𝜁 ) )
cbvral8vw.6 ( 𝑞 = 𝑓 → ( 𝜁𝜎 ) )
cbvral8vw.7 ( 𝑟 = 𝑔 → ( 𝜎𝜌 ) )
cbvral8vw.8 ( 𝑠 = → ( 𝜌𝜓 ) )
Assertion cbvral8vw ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑝𝐸𝑞𝐹𝑟𝐺𝑠𝐻 𝜑 ↔ ∀ 𝑎𝐴𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸𝑓𝐹𝑔𝐺𝐻 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvral8vw.1 ( 𝑥 = 𝑎 → ( 𝜑𝜒 ) )
2 cbvral8vw.2 ( 𝑦 = 𝑏 → ( 𝜒𝜃 ) )
3 cbvral8vw.3 ( 𝑧 = 𝑐 → ( 𝜃𝜏 ) )
4 cbvral8vw.4 ( 𝑤 = 𝑑 → ( 𝜏𝜂 ) )
5 cbvral8vw.5 ( 𝑝 = 𝑒 → ( 𝜂𝜁 ) )
6 cbvral8vw.6 ( 𝑞 = 𝑓 → ( 𝜁𝜎 ) )
7 cbvral8vw.7 ( 𝑟 = 𝑔 → ( 𝜎𝜌 ) )
8 cbvral8vw.8 ( 𝑠 = → ( 𝜌𝜓 ) )
9 1 4ralbidv ( 𝑥 = 𝑎 → ( ∀ 𝑝𝐸𝑞𝐹𝑟𝐺𝑠𝐻 𝜑 ↔ ∀ 𝑝𝐸𝑞𝐹𝑟𝐺𝑠𝐻 𝜒 ) )
10 2 4ralbidv ( 𝑦 = 𝑏 → ( ∀ 𝑝𝐸𝑞𝐹𝑟𝐺𝑠𝐻 𝜒 ↔ ∀ 𝑝𝐸𝑞𝐹𝑟𝐺𝑠𝐻 𝜃 ) )
11 3 4ralbidv ( 𝑧 = 𝑐 → ( ∀ 𝑝𝐸𝑞𝐹𝑟𝐺𝑠𝐻 𝜃 ↔ ∀ 𝑝𝐸𝑞𝐹𝑟𝐺𝑠𝐻 𝜏 ) )
12 4 4ralbidv ( 𝑤 = 𝑑 → ( ∀ 𝑝𝐸𝑞𝐹𝑟𝐺𝑠𝐻 𝜏 ↔ ∀ 𝑝𝐸𝑞𝐹𝑟𝐺𝑠𝐻 𝜂 ) )
13 9 10 11 12 cbvral4vw ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑝𝐸𝑞𝐹𝑟𝐺𝑠𝐻 𝜑 ↔ ∀ 𝑎𝐴𝑏𝐵𝑐𝐶𝑑𝐷𝑝𝐸𝑞𝐹𝑟𝐺𝑠𝐻 𝜂 )
14 5 6 7 8 cbvral4vw ( ∀ 𝑝𝐸𝑞𝐹𝑟𝐺𝑠𝐻 𝜂 ↔ ∀ 𝑒𝐸𝑓𝐹𝑔𝐺𝐻 𝜓 )
15 14 4ralbii ( ∀ 𝑎𝐴𝑏𝐵𝑐𝐶𝑑𝐷𝑝𝐸𝑞𝐹𝑟𝐺𝑠𝐻 𝜂 ↔ ∀ 𝑎𝐴𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸𝑓𝐹𝑔𝐺𝐻 𝜓 )
16 13 15 bitri ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷𝑝𝐸𝑞𝐹𝑟𝐺𝑠𝐻 𝜑 ↔ ∀ 𝑎𝐴𝑏𝐵𝑐𝐶𝑑𝐷𝑒𝐸𝑓𝐹𝑔𝐺𝐻 𝜓 )