Step |
Hyp |
Ref |
Expression |
1 |
|
cbvral8vw.1 |
⊢ ( 𝑥 = 𝑎 → ( 𝜑 ↔ 𝜒 ) ) |
2 |
|
cbvral8vw.2 |
⊢ ( 𝑦 = 𝑏 → ( 𝜒 ↔ 𝜃 ) ) |
3 |
|
cbvral8vw.3 |
⊢ ( 𝑧 = 𝑐 → ( 𝜃 ↔ 𝜏 ) ) |
4 |
|
cbvral8vw.4 |
⊢ ( 𝑤 = 𝑑 → ( 𝜏 ↔ 𝜂 ) ) |
5 |
|
cbvral8vw.5 |
⊢ ( 𝑝 = 𝑒 → ( 𝜂 ↔ 𝜁 ) ) |
6 |
|
cbvral8vw.6 |
⊢ ( 𝑞 = 𝑓 → ( 𝜁 ↔ 𝜎 ) ) |
7 |
|
cbvral8vw.7 |
⊢ ( 𝑟 = 𝑔 → ( 𝜎 ↔ 𝜌 ) ) |
8 |
|
cbvral8vw.8 |
⊢ ( 𝑠 = ℎ → ( 𝜌 ↔ 𝜓 ) ) |
9 |
1
|
4ralbidv |
⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 ∀ 𝑟 ∈ 𝐺 ∀ 𝑠 ∈ 𝐻 𝜑 ↔ ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 ∀ 𝑟 ∈ 𝐺 ∀ 𝑠 ∈ 𝐻 𝜒 ) ) |
10 |
2
|
4ralbidv |
⊢ ( 𝑦 = 𝑏 → ( ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 ∀ 𝑟 ∈ 𝐺 ∀ 𝑠 ∈ 𝐻 𝜒 ↔ ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 ∀ 𝑟 ∈ 𝐺 ∀ 𝑠 ∈ 𝐻 𝜃 ) ) |
11 |
3
|
4ralbidv |
⊢ ( 𝑧 = 𝑐 → ( ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 ∀ 𝑟 ∈ 𝐺 ∀ 𝑠 ∈ 𝐻 𝜃 ↔ ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 ∀ 𝑟 ∈ 𝐺 ∀ 𝑠 ∈ 𝐻 𝜏 ) ) |
12 |
4
|
4ralbidv |
⊢ ( 𝑤 = 𝑑 → ( ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 ∀ 𝑟 ∈ 𝐺 ∀ 𝑠 ∈ 𝐻 𝜏 ↔ ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 ∀ 𝑟 ∈ 𝐺 ∀ 𝑠 ∈ 𝐻 𝜂 ) ) |
13 |
9 10 11 12
|
cbvral4vw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 ∀ 𝑟 ∈ 𝐺 ∀ 𝑠 ∈ 𝐻 𝜑 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 ∀ 𝑟 ∈ 𝐺 ∀ 𝑠 ∈ 𝐻 𝜂 ) |
14 |
5 6 7 8
|
cbvral4vw |
⊢ ( ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 ∀ 𝑟 ∈ 𝐺 ∀ 𝑠 ∈ 𝐻 𝜂 ↔ ∀ 𝑒 ∈ 𝐸 ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐺 ∀ ℎ ∈ 𝐻 𝜓 ) |
15 |
14
|
4ralbii |
⊢ ( ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 ∀ 𝑟 ∈ 𝐺 ∀ 𝑠 ∈ 𝐻 𝜂 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ 𝐷 ∀ 𝑒 ∈ 𝐸 ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐺 ∀ ℎ ∈ 𝐻 𝜓 ) |
16 |
13 15
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐷 ∀ 𝑝 ∈ 𝐸 ∀ 𝑞 ∈ 𝐹 ∀ 𝑟 ∈ 𝐺 ∀ 𝑠 ∈ 𝐻 𝜑 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐶 ∀ 𝑑 ∈ 𝐷 ∀ 𝑒 ∈ 𝐸 ∀ 𝑓 ∈ 𝐹 ∀ 𝑔 ∈ 𝐺 ∀ ℎ ∈ 𝐻 𝜓 ) |