| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvralcsf.1 | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 2 |  | cbvralcsf.2 | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 3 |  | cbvralcsf.3 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 4 |  | cbvralcsf.4 | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 5 |  | cbvralcsf.5 | ⊢ ( 𝑥  =  𝑦  →  𝐴  =  𝐵 ) | 
						
							| 6 |  | cbvralcsf.6 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑥  ∈  𝐴  →  𝜑 ) | 
						
							| 8 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧  /  𝑥 ⦌ 𝐴 | 
						
							| 9 | 8 | nfcri | ⊢ Ⅎ 𝑥 𝑧  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 | 
						
							| 10 |  | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 11 | 9 10 | nfim | ⊢ Ⅎ 𝑥 ( 𝑧  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  →  [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 12 |  | id | ⊢ ( 𝑥  =  𝑧  →  𝑥  =  𝑧 ) | 
						
							| 13 |  | csbeq1a | ⊢ ( 𝑥  =  𝑧  →  𝐴  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 ) | 
						
							| 14 | 12 13 | eleq12d | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 15 |  | sbceq1a | ⊢ ( 𝑥  =  𝑧  →  ( 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 16 | 14 15 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ( 𝑧  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  →  [ 𝑧  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 17 | 7 11 16 | cbvalv1 | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ∀ 𝑧 ( 𝑧  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  →  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑦 𝑧 | 
						
							| 19 | 18 1 | nfcsb | ⊢ Ⅎ 𝑦 ⦋ 𝑧  /  𝑥 ⦌ 𝐴 | 
						
							| 20 | 19 | nfcri | ⊢ Ⅎ 𝑦 𝑧  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 | 
						
							| 21 | 18 3 | nfsbc | ⊢ Ⅎ 𝑦 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 22 | 20 21 | nfim | ⊢ Ⅎ 𝑦 ( 𝑧  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  →  [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 23 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑦  ∈  𝐵  →  𝜓 ) | 
						
							| 24 |  | id | ⊢ ( 𝑧  =  𝑦  →  𝑧  =  𝑦 ) | 
						
							| 25 |  | csbeq1 | ⊢ ( 𝑧  =  𝑦  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) | 
						
							| 26 |  | df-csb | ⊢ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  { 𝑣  ∣  [ 𝑦  /  𝑥 ] 𝑣  ∈  𝐴 } | 
						
							| 27 | 2 | nfcri | ⊢ Ⅎ 𝑥 𝑣  ∈  𝐵 | 
						
							| 28 | 5 | eleq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑣  ∈  𝐴  ↔  𝑣  ∈  𝐵 ) ) | 
						
							| 29 | 27 28 | sbie | ⊢ ( [ 𝑦  /  𝑥 ] 𝑣  ∈  𝐴  ↔  𝑣  ∈  𝐵 ) | 
						
							| 30 |  | sbsbc | ⊢ ( [ 𝑦  /  𝑥 ] 𝑣  ∈  𝐴  ↔  [ 𝑦  /  𝑥 ] 𝑣  ∈  𝐴 ) | 
						
							| 31 | 29 30 | bitr3i | ⊢ ( 𝑣  ∈  𝐵  ↔  [ 𝑦  /  𝑥 ] 𝑣  ∈  𝐴 ) | 
						
							| 32 | 31 | eqabi | ⊢ 𝐵  =  { 𝑣  ∣  [ 𝑦  /  𝑥 ] 𝑣  ∈  𝐴 } | 
						
							| 33 | 26 32 | eqtr4i | ⊢ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  𝐵 | 
						
							| 34 | 25 33 | eqtrdi | ⊢ ( 𝑧  =  𝑦  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  =  𝐵 ) | 
						
							| 35 | 24 34 | eleq12d | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 36 |  | dfsbcq | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 37 |  | sbsbc | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 38 | 4 6 | sbie | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝜓 ) | 
						
							| 39 | 37 38 | bitr3i | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝜓 ) | 
						
							| 40 | 36 39 | bitrdi | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝜓 ) ) | 
						
							| 41 | 35 40 | imbi12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑧  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  →  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ( 𝑦  ∈  𝐵  →  𝜓 ) ) ) | 
						
							| 42 | 22 23 41 | cbvalv1 | ⊢ ( ∀ 𝑧 ( 𝑧  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  →  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝜓 ) ) | 
						
							| 43 | 17 42 | bitri | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝜓 ) ) | 
						
							| 44 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝜑 ) ) | 
						
							| 45 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  𝐵 𝜓  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝜓 ) ) | 
						
							| 46 | 43 44 45 | 3bitr4i | ⊢ ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑦  ∈  𝐵 𝜓 ) |