| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvralf.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
cbvralf.2 |
⊢ Ⅎ 𝑦 𝐴 |
| 3 |
|
cbvralf.3 |
⊢ Ⅎ 𝑦 𝜑 |
| 4 |
|
cbvralf.4 |
⊢ Ⅎ 𝑥 𝜓 |
| 5 |
|
cbvralf.5 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 → 𝜑 ) |
| 7 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 |
| 8 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 |
| 9 |
7 8
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 → [ 𝑧 / 𝑥 ] 𝜑 ) |
| 10 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 11 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 12 |
10 11
|
imbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑧 ∈ 𝐴 → [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
| 13 |
6 9 12
|
cbvalv1 |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝐴 → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 14 |
2
|
nfcri |
⊢ Ⅎ 𝑦 𝑧 ∈ 𝐴 |
| 15 |
3
|
nfsb |
⊢ Ⅎ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 |
| 16 |
14 15
|
nfim |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝐴 → [ 𝑧 / 𝑥 ] 𝜑 ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑦 ∈ 𝐴 → 𝜓 ) |
| 18 |
|
eleq1w |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 19 |
|
sbequ |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 20 |
4 5
|
sbie |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 21 |
19 20
|
bitrdi |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 22 |
18 21
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝐴 → [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → 𝜓 ) ) ) |
| 23 |
16 17 22
|
cbvalv1 |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝐴 → [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) ) |
| 24 |
13 23
|
bitri |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) ) |
| 25 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 26 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝜓 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) ) |
| 27 |
24 25 26
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 𝜓 ) |