Metamath Proof Explorer


Theorem cbvralfw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvralf with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by NM, 7-Mar-2004) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbvralfw.1 𝑥 𝐴
cbvralfw.2 𝑦 𝐴
cbvralfw.3 𝑦 𝜑
cbvralfw.4 𝑥 𝜓
cbvralfw.5 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvralfw ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑦𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvralfw.1 𝑥 𝐴
2 cbvralfw.2 𝑦 𝐴
3 cbvralfw.3 𝑦 𝜑
4 cbvralfw.4 𝑥 𝜓
5 cbvralfw.5 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
6 2 nfcri 𝑦 𝑥𝐴
7 6 3 nfim 𝑦 ( 𝑥𝐴𝜑 )
8 1 nfcri 𝑥 𝑦𝐴
9 8 4 nfim 𝑥 ( 𝑦𝐴𝜓 )
10 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
11 10 5 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑦𝐴𝜓 ) ) )
12 7 9 11 cbvalv1 ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑦 ( 𝑦𝐴𝜓 ) )
13 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
14 df-ral ( ∀ 𝑦𝐴 𝜓 ↔ ∀ 𝑦 ( 𝑦𝐴𝜓 ) )
15 12 13 14 3bitr4i ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑦𝐴 𝜓 )