Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
cbvralfw
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution.
Version of cbvralf with a disjoint variable condition, which does not
require ax-10 , ax-13 . (Contributed by NM , 7-Mar-2004) (Revised by Gino Giotto , 23-May-2024)
Ref
Expression
Hypotheses
cbvralfw.1
⊢ Ⅎ 𝑥 𝐴
cbvralfw.2
⊢ Ⅎ 𝑦 𝐴
cbvralfw.3
⊢ Ⅎ 𝑦 𝜑
cbvralfw.4
⊢ Ⅎ 𝑥 𝜓
cbvralfw.5
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
Assertion
cbvralfw
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
cbvralfw.1
⊢ Ⅎ 𝑥 𝐴
2
cbvralfw.2
⊢ Ⅎ 𝑦 𝐴
3
cbvralfw.3
⊢ Ⅎ 𝑦 𝜑
4
cbvralfw.4
⊢ Ⅎ 𝑥 𝜓
5
cbvralfw.5
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
6
2
nfcri
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴
7
6 3
nfim
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 → 𝜑 )
8
1
nfcri
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴
9
8 4
nfim
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 → 𝜓 )
10
eleq1w
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) )
11
10 5
imbi12d
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → 𝜓 ) ) )
12
7 9 11
cbvalv1
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) )
13
df-ral
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) )
14
df-ral
⊢ ( ∀ 𝑦 ∈ 𝐴 𝜓 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) )
15
12 13 14
3bitr4i
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 𝜓 )