Metamath Proof Explorer


Theorem cbvralsv

Description: Change bound variable by using a substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvralsvw when possible. (Contributed by NM, 20-Nov-2005) (Revised by Andrew Salmon, 11-Jul-2011) (New usage is discouraged.)

Ref Expression
Assertion cbvralsv ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑦𝐴 [ 𝑦 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 nfv 𝑧 𝜑
2 nfs1v 𝑥 [ 𝑧 / 𝑥 ] 𝜑
3 sbequ12 ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) )
4 1 2 3 cbvral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑧𝐴 [ 𝑧 / 𝑥 ] 𝜑 )
5 nfv 𝑦 𝜑
6 5 nfsb 𝑦 [ 𝑧 / 𝑥 ] 𝜑
7 nfv 𝑧 [ 𝑦 / 𝑥 ] 𝜑
8 sbequ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) )
9 6 7 8 cbvral ( ∀ 𝑧𝐴 [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑦𝐴 [ 𝑦 / 𝑥 ] 𝜑 )
10 4 9 bitri ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑦𝐴 [ 𝑦 / 𝑥 ] 𝜑 )