| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sb8v |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 3 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐴 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 4 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
| 5 |
4
|
imbi1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → 𝜑 ) ) ) |
| 6 |
5
|
sbbiiev |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ [ 𝑦 / 𝑥 ] ( 𝑦 ∈ 𝐴 → 𝜑 ) ) |
| 7 |
|
sbrimvw |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑦 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 8 |
6 7
|
bitr2i |
⊢ ( ( 𝑦 ∈ 𝐴 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 9 |
8
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 10 |
3 9
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝐴 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 11 |
1 2 10
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 [ 𝑦 / 𝑥 ] 𝜑 ) |