Metamath Proof Explorer


Theorem cbvralsvw

Description: Change bound variable by using a substitution. Version of cbvralsv with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 20-Nov-2005) Avoid ax-13 . (Revised by GG, 10-Jan-2024) (Proof shortened by Wolf Lammen, 8-Mar-2025) Avoid ax-10 , ax-12 . (Revised by SN, 21-Aug-2025)

Ref Expression
Assertion cbvralsvw ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑦𝐴 [ 𝑦 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sb8v ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥𝐴𝜑 ) )
2 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
3 df-ral ( ∀ 𝑦𝐴 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦𝐴 → [ 𝑦 / 𝑥 ] 𝜑 ) )
4 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
5 4 imbi1d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑦𝐴𝜑 ) ) )
6 5 pm5.74i ( ( 𝑥 = 𝑦 → ( 𝑥𝐴𝜑 ) ) ↔ ( 𝑥 = 𝑦 → ( 𝑦𝐴𝜑 ) ) )
7 6 albii ( ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝑥𝐴𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝑦𝐴𝜑 ) ) )
8 sb6 ( [ 𝑦 / 𝑥 ] ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝑥𝐴𝜑 ) ) )
9 sb6 ( [ 𝑦 / 𝑥 ] ( 𝑦𝐴𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → ( 𝑦𝐴𝜑 ) ) )
10 7 8 9 3bitr4i ( [ 𝑦 / 𝑥 ] ( 𝑥𝐴𝜑 ) ↔ [ 𝑦 / 𝑥 ] ( 𝑦𝐴𝜑 ) )
11 sbrimvw ( [ 𝑦 / 𝑥 ] ( 𝑦𝐴𝜑 ) ↔ ( 𝑦𝐴 → [ 𝑦 / 𝑥 ] 𝜑 ) )
12 10 11 bitr2i ( ( 𝑦𝐴 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ [ 𝑦 / 𝑥 ] ( 𝑥𝐴𝜑 ) )
13 12 albii ( ∀ 𝑦 ( 𝑦𝐴 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥𝐴𝜑 ) )
14 3 13 bitri ( ∀ 𝑦𝐴 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥𝐴𝜑 ) )
15 1 2 14 3bitr4i ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑦𝐴 [ 𝑦 / 𝑥 ] 𝜑 )