Metamath Proof Explorer


Theorem cbvralvw

Description: Change the bound variable of a restricted universal quantifier using implicit substitution. Version of cbvralv with a disjoint variable condition, which does not require ax-10 , ax-11 , ax-12 , ax-13 . (Contributed by NM, 28-Jan-1997) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypothesis cbvralvw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvralvw ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑦𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvralvw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
3 2 1 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑦𝐴𝜓 ) ) )
4 3 cbvalvw ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑦 ( 𝑦𝐴𝜓 ) )
5 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
6 df-ral ( ∀ 𝑦𝐴 𝜓 ↔ ∀ 𝑦 ( 𝑦𝐴𝜓 ) )
7 4 5 6 3bitr4i ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑦𝐴 𝜓 )