Metamath Proof Explorer


Theorem cbvreuw

Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 15-Oct-2016) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024) Avoid ax-10 . (Revised by Wolf Lammen, 10-Dec-2024)

Ref Expression
Hypotheses cbvreuw.1 𝑦 𝜑
cbvreuw.2 𝑥 𝜓
cbvreuw.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvreuw ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑦𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvreuw.1 𝑦 𝜑
2 cbvreuw.2 𝑥 𝜓
3 cbvreuw.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 1 2 3 cbvrexw ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴 𝜓 )
5 1 2 3 cbvrmow ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑦𝐴 𝜓 )
6 4 5 anbi12i ( ( ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐴 𝜑 ) ↔ ( ∃ 𝑦𝐴 𝜓 ∧ ∃* 𝑦𝐴 𝜓 ) )
7 reu5 ( ∃! 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐴 𝜑 ) )
8 reu5 ( ∃! 𝑦𝐴 𝜓 ↔ ( ∃ 𝑦𝐴 𝜓 ∧ ∃* 𝑦𝐴 𝜓 ) )
9 6 7 8 3bitr4i ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑦𝐴 𝜓 )