| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvreuwOLD.1 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 2 |  | cbvreuwOLD.2 | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 3 |  | cbvreuwOLD.3 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑥  ∈  𝐴  ∧  𝜑 ) | 
						
							| 5 | 4 | sb8euv | ⊢ ( ∃! 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ∃! 𝑧 [ 𝑧  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 6 |  | sban | ⊢ ( [ 𝑧  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ( [ 𝑧  /  𝑥 ] 𝑥  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 7 | 6 | eubii | ⊢ ( ∃! 𝑧 [ 𝑧  /  𝑥 ] ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ∃! 𝑧 ( [ 𝑧  /  𝑥 ] 𝑥  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 8 |  | clelsb1 | ⊢ ( [ 𝑧  /  𝑥 ] 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) | 
						
							| 9 | 8 | anbi1i | ⊢ ( ( [ 𝑧  /  𝑥 ] 𝑥  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 10 | 9 | eubii | ⊢ ( ∃! 𝑧 ( [ 𝑧  /  𝑥 ] 𝑥  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ∃! 𝑧 ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑦 𝑧  ∈  𝐴 | 
						
							| 12 | 1 | nfsbv | ⊢ Ⅎ 𝑦 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 13 | 11 12 | nfan | ⊢ Ⅎ 𝑦 ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 14 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑦  ∈  𝐴  ∧  𝜓 ) | 
						
							| 15 |  | eleq1w | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 16 |  | sbequ | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 17 | 2 3 | sbiev | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝜓 ) | 
						
							| 18 | 16 17 | bitrdi | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝜓 ) ) | 
						
							| 19 | 15 18 | anbi12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝜓 ) ) ) | 
						
							| 20 | 13 14 19 | cbveuw | ⊢ ( ∃! 𝑧 ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ∃! 𝑦 ( 𝑦  ∈  𝐴  ∧  𝜓 ) ) | 
						
							| 21 | 10 20 | bitri | ⊢ ( ∃! 𝑧 ( [ 𝑧  /  𝑥 ] 𝑥  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ∃! 𝑦 ( 𝑦  ∈  𝐴  ∧  𝜓 ) ) | 
						
							| 22 | 5 7 21 | 3bitri | ⊢ ( ∃! 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ∃! 𝑦 ( 𝑦  ∈  𝐴  ∧  𝜓 ) ) | 
						
							| 23 |  | df-reu | ⊢ ( ∃! 𝑥  ∈  𝐴 𝜑  ↔  ∃! 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 24 |  | df-reu | ⊢ ( ∃! 𝑦  ∈  𝐴 𝜓  ↔  ∃! 𝑦 ( 𝑦  ∈  𝐴  ∧  𝜓 ) ) | 
						
							| 25 | 22 23 24 | 3bitr4i | ⊢ ( ∃! 𝑥  ∈  𝐴 𝜑  ↔  ∃! 𝑦  ∈  𝐴 𝜓 ) |