Metamath Proof Explorer


Theorem cbvrex2vw

Description: Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v with a disjoint variable condition, which does not require ax-13 . (Contributed by FL, 2-Jul-2012) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvrex2vw.1 ( 𝑥 = 𝑧 → ( 𝜑𝜒 ) )
cbvrex2vw.2 ( 𝑦 = 𝑤 → ( 𝜒𝜓 ) )
Assertion cbvrex2vw ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑧𝐴𝑤𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvrex2vw.1 ( 𝑥 = 𝑧 → ( 𝜑𝜒 ) )
2 cbvrex2vw.2 ( 𝑦 = 𝑤 → ( 𝜒𝜓 ) )
3 1 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑦𝐵 𝜑 ↔ ∃ 𝑦𝐵 𝜒 ) )
4 3 cbvrexvw ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑧𝐴𝑦𝐵 𝜒 )
5 2 cbvrexvw ( ∃ 𝑦𝐵 𝜒 ↔ ∃ 𝑤𝐵 𝜓 )
6 5 rexbii ( ∃ 𝑧𝐴𝑦𝐵 𝜒 ↔ ∃ 𝑧𝐴𝑤𝐵 𝜓 )
7 4 6 bitri ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑧𝐴𝑤𝐵 𝜓 )