Step |
Hyp |
Ref |
Expression |
1 |
|
cbvraldva2.1 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
cbvraldva2.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐵 ) |
3 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 ) |
4 |
3 2
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
5 |
4 1
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
6 |
5
|
ancoms |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
7 |
6
|
pm5.32da |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) ) |
8 |
7
|
cbvexvw |
⊢ ( ∃ 𝑥 ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
9 |
|
19.42v |
⊢ ( ∃ 𝑥 ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
10 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ↔ ( 𝜑 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
11 |
8 9 10
|
3bitr3i |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
12 |
|
pm5.32 |
⊢ ( ( 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) ↔ ( ( 𝜑 ∧ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ( 𝜑 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) ) |
13 |
11 12
|
mpbir |
⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
14 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
15 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝜒 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) |
16 |
13 14 15
|
3bitr4g |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |