| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvraldva2.1 | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑦 )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 2 |  | cbvraldva2.2 | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑦 )  →  𝐴  =  𝐵 ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑦 )  →  𝑥  =  𝑦 ) | 
						
							| 4 | 3 2 | eleq12d | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑦 )  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 5 | 4 1 | anbi12d | ⊢ ( ( 𝜑  ∧  𝑥  =  𝑦 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ( 𝑦  ∈  𝐵  ∧  𝜒 ) ) ) | 
						
							| 6 | 5 | ancoms | ⊢ ( ( 𝑥  =  𝑦  ∧  𝜑 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ( 𝑦  ∈  𝐵  ∧  𝜒 ) ) ) | 
						
							| 7 | 6 | pm5.32da | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝜓 ) )  ↔  ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝜒 ) ) ) ) | 
						
							| 8 | 7 | cbvexvw | ⊢ ( ∃ 𝑥 ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝜓 ) )  ↔  ∃ 𝑦 ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝜒 ) ) ) | 
						
							| 9 |  | 19.42v | ⊢ ( ∃ 𝑥 ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝜓 ) )  ↔  ( 𝜑  ∧  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) ) | 
						
							| 10 |  | 19.42v | ⊢ ( ∃ 𝑦 ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝜒 ) )  ↔  ( 𝜑  ∧  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜒 ) ) ) | 
						
							| 11 | 8 9 10 | 3bitr3i | ⊢ ( ( 𝜑  ∧  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 ) )  ↔  ( 𝜑  ∧  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜒 ) ) ) | 
						
							| 12 |  | pm5.32 | ⊢ ( ( 𝜑  →  ( ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜒 ) ) )  ↔  ( ( 𝜑  ∧  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 ) )  ↔  ( 𝜑  ∧  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜒 ) ) ) ) | 
						
							| 13 | 11 12 | mpbir | ⊢ ( 𝜑  →  ( ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜒 ) ) ) | 
						
							| 14 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐴 𝜓  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) | 
						
							| 15 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝐵 𝜒  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜒 ) ) | 
						
							| 16 | 13 14 15 | 3bitr4g | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝜓  ↔  ∃ 𝑦  ∈  𝐵 𝜒 ) ) |