Metamath Proof Explorer


Theorem cbvrexf

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrexfw when possible. (Contributed by FL, 27-Apr-2008) (Revised by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbvralf.1 𝑥 𝐴
cbvralf.2 𝑦 𝐴
cbvralf.3 𝑦 𝜑
cbvralf.4 𝑥 𝜓
cbvralf.5 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvrexf ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvralf.1 𝑥 𝐴
2 cbvralf.2 𝑦 𝐴
3 cbvralf.3 𝑦 𝜑
4 cbvralf.4 𝑥 𝜓
5 cbvralf.5 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
6 3 nfn 𝑦 ¬ 𝜑
7 4 nfn 𝑥 ¬ 𝜓
8 5 notbid ( 𝑥 = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
9 1 2 6 7 8 cbvralf ( ∀ 𝑥𝐴 ¬ 𝜑 ↔ ∀ 𝑦𝐴 ¬ 𝜓 )
10 9 notbii ( ¬ ∀ 𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑦𝐴 ¬ 𝜓 )
11 dfrex2 ( ∃ 𝑥𝐴 𝜑 ↔ ¬ ∀ 𝑥𝐴 ¬ 𝜑 )
12 dfrex2 ( ∃ 𝑦𝐴 𝜓 ↔ ¬ ∀ 𝑦𝐴 ¬ 𝜓 )
13 10 11 12 3bitr4i ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴 𝜓 )