| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvriota.1 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 2 |  | cbvriota.2 | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 3 |  | cbvriota.3 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 4 |  | eleq1w | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 5 |  | sbequ12 | ⊢ ( 𝑥  =  𝑧  →  ( 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 6 | 4 5 | anbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑥  ∈  𝐴  ∧  𝜑 ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑥 𝑧  ∈  𝐴 | 
						
							| 9 |  | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 10 | 8 9 | nfan | ⊢ Ⅎ 𝑥 ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 11 | 6 7 10 | cbviota | ⊢ ( ℩ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  =  ( ℩ 𝑧 ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 12 |  | eleq1w | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 13 |  | sbequ | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 14 | 2 3 | sbie | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝜓 ) | 
						
							| 15 | 13 14 | bitrdi | ⊢ ( 𝑧  =  𝑦  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  𝜓 ) ) | 
						
							| 16 | 12 15 | anbi12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝜓 ) ) ) | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑦 𝑧  ∈  𝐴 | 
						
							| 18 | 1 | nfsb | ⊢ Ⅎ 𝑦 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 19 | 17 18 | nfan | ⊢ Ⅎ 𝑦 ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 20 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑦  ∈  𝐴  ∧  𝜓 ) | 
						
							| 21 | 16 19 20 | cbviota | ⊢ ( ℩ 𝑧 ( 𝑧  ∈  𝐴  ∧  [ 𝑧  /  𝑥 ] 𝜑 ) )  =  ( ℩ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝜓 ) ) | 
						
							| 22 | 11 21 | eqtri | ⊢ ( ℩ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  =  ( ℩ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝜓 ) ) | 
						
							| 23 |  | df-riota | ⊢ ( ℩ 𝑥  ∈  𝐴 𝜑 )  =  ( ℩ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 24 |  | df-riota | ⊢ ( ℩ 𝑦  ∈  𝐴 𝜓 )  =  ( ℩ 𝑦 ( 𝑦  ∈  𝐴  ∧  𝜓 ) ) | 
						
							| 25 | 22 23 24 | 3eqtr4i | ⊢ ( ℩ 𝑥  ∈  𝐴 𝜑 )  =  ( ℩ 𝑦  ∈  𝐴 𝜓 ) |