Metamath Proof Explorer


Theorem cbvriota

Description: Change bound variable in a restricted description binder. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvriotaw when possible. (Contributed by NM, 18-Mar-2013) (Revised by Mario Carneiro, 15-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbvriota.1 𝑦 𝜑
cbvriota.2 𝑥 𝜓
cbvriota.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvriota ( 𝑥𝐴 𝜑 ) = ( 𝑦𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvriota.1 𝑦 𝜑
2 cbvriota.2 𝑥 𝜓
3 cbvriota.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 eleq1w ( 𝑥 = 𝑧 → ( 𝑥𝐴𝑧𝐴 ) )
5 sbequ12 ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) )
6 4 5 anbi12d ( 𝑥 = 𝑧 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑧𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) )
7 nfv 𝑧 ( 𝑥𝐴𝜑 )
8 nfv 𝑥 𝑧𝐴
9 nfs1v 𝑥 [ 𝑧 / 𝑥 ] 𝜑
10 8 9 nfan 𝑥 ( 𝑧𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 )
11 6 7 10 cbviota ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) = ( ℩ 𝑧 ( 𝑧𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) )
12 eleq1w ( 𝑧 = 𝑦 → ( 𝑧𝐴𝑦𝐴 ) )
13 sbequ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) )
14 2 3 sbie ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
15 13 14 bitrdi ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑𝜓 ) )
16 12 15 anbi12d ( 𝑧 = 𝑦 → ( ( 𝑧𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( 𝑦𝐴𝜓 ) ) )
17 nfv 𝑦 𝑧𝐴
18 1 nfsb 𝑦 [ 𝑧 / 𝑥 ] 𝜑
19 17 18 nfan 𝑦 ( 𝑧𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 )
20 nfv 𝑧 ( 𝑦𝐴𝜓 )
21 16 19 20 cbviota ( ℩ 𝑧 ( 𝑧𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) = ( ℩ 𝑦 ( 𝑦𝐴𝜓 ) )
22 11 21 eqtri ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) ) = ( ℩ 𝑦 ( 𝑦𝐴𝜓 ) )
23 df-riota ( 𝑥𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥𝐴𝜑 ) )
24 df-riota ( 𝑦𝐴 𝜓 ) = ( ℩ 𝑦 ( 𝑦𝐴𝜓 ) )
25 22 23 24 3eqtr4i ( 𝑥𝐴 𝜑 ) = ( 𝑦𝐴 𝜓 )