Step |
Hyp |
Ref |
Expression |
1 |
|
cbvriotaw.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
cbvriotaw.2 |
⊢ Ⅎ 𝑥 𝜓 |
3 |
|
cbvriotaw.3 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
5 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
6 |
4 5
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
7 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
8 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 |
9 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 |
10 |
8 9
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) |
11 |
6 7 10
|
cbviotaw |
⊢ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = ( ℩ 𝑧 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
12 |
|
eleq1w |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
13 |
2 3
|
sbhypf |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
14 |
12 13
|
anbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
15 |
|
nfv |
⊢ Ⅎ 𝑦 𝑧 ∈ 𝐴 |
16 |
1
|
nfsbv |
⊢ Ⅎ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 |
17 |
15 16
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) |
18 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) |
19 |
14 17 18
|
cbviotaw |
⊢ ( ℩ 𝑧 ( 𝑧 ∈ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜑 ) ) = ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
20 |
11 19
|
eqtri |
⊢ ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) = ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
21 |
|
df-riota |
⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
22 |
|
df-riota |
⊢ ( ℩ 𝑦 ∈ 𝐴 𝜓 ) = ( ℩ 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
23 |
20 21 22
|
3eqtr4i |
⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = ( ℩ 𝑦 ∈ 𝐴 𝜓 ) |