Metamath Proof Explorer


Theorem cbvrmo

Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrmow , cbvrmovw when possible. (Contributed by NM, 16-Jun-2017) (New usage is discouraged.)

Ref Expression
Hypotheses cbvral.1 𝑦 𝜑
cbvral.2 𝑥 𝜓
cbvral.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvrmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑦𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvral.1 𝑦 𝜑
2 cbvral.2 𝑥 𝜓
3 cbvral.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 1 2 3 cbvrex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴 𝜓 )
5 1 2 3 cbvreu ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑦𝐴 𝜓 )
6 4 5 imbi12i ( ( ∃ 𝑥𝐴 𝜑 → ∃! 𝑥𝐴 𝜑 ) ↔ ( ∃ 𝑦𝐴 𝜓 → ∃! 𝑦𝐴 𝜓 ) )
7 rmo5 ( ∃* 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 → ∃! 𝑥𝐴 𝜑 ) )
8 rmo5 ( ∃* 𝑦𝐴 𝜓 ↔ ( ∃ 𝑦𝐴 𝜓 → ∃! 𝑦𝐴 𝜓 ) )
9 6 7 8 3bitr4i ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑦𝐴 𝜓 )