Metamath Proof Explorer


Theorem cbvrmovw

Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmov with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbvralvw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvrmovw ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑦𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvralvw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
3 2 1 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑦𝐴𝜓 ) ) )
4 3 cbvmovw ( ∃* 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃* 𝑦 ( 𝑦𝐴𝜓 ) )
5 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
6 df-rmo ( ∃* 𝑦𝐴 𝜓 ↔ ∃* 𝑦 ( 𝑦𝐴𝜓 ) )
7 4 5 6 3bitr4i ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑦𝐴 𝜓 )