Metamath Proof Explorer


Theorem cbvrmow

Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmo with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbvrmow.1 𝑦 𝜑
cbvrmow.2 𝑥 𝜓
cbvrmow.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvrmow ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑦𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvrmow.1 𝑦 𝜑
2 cbvrmow.2 𝑥 𝜓
3 cbvrmow.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 nfv 𝑦 𝑥𝐴
5 4 1 nfan 𝑦 ( 𝑥𝐴𝜑 )
6 nfv 𝑥 𝑦𝐴
7 6 2 nfan 𝑥 ( 𝑦𝐴𝜓 )
8 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
9 8 3 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑦𝐴𝜓 ) ) )
10 5 7 9 cbvmow ( ∃* 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃* 𝑦 ( 𝑦𝐴𝜓 ) )
11 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
12 df-rmo ( ∃* 𝑦𝐴 𝜓 ↔ ∃* 𝑦 ( 𝑦𝐴𝜓 ) )
13 10 11 12 3bitr4i ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑦𝐴 𝜓 )