Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
cbvrmow
Metamath Proof Explorer
Description: Change the bound variable of a restricted at-most-one quantifier using
implicit substitution. Version of cbvrmo with a disjoint variable
condition, which does not require ax-10 , ax-13 . (Contributed by NM , 16-Jun-2017) (Revised by Gino Giotto , 23-May-2024)
Ref
Expression
Hypotheses
cbvrmow.1
⊢ Ⅎ 𝑦 𝜑
cbvrmow.2
⊢ Ⅎ 𝑥 𝜓
cbvrmow.3
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
Assertion
cbvrmow
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑦 ∈ 𝐴 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
cbvrmow.1
⊢ Ⅎ 𝑦 𝜑
2
cbvrmow.2
⊢ Ⅎ 𝑥 𝜓
3
cbvrmow.3
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) )
4
nfv
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴
5
4 1
nfan
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 )
6
nfv
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴
7
6 2
nfan
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜓 )
8
eleq1w
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) )
9
8 3
anbi12d
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) )
10
5 7 9
cbvmow
⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) )
11
df-rmo
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) )
12
df-rmo
⊢ ( ∃* 𝑦 ∈ 𝐴 𝜓 ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) )
13
10 11 12
3bitr4i
⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑦 ∈ 𝐴 𝜓 )