Metamath Proof Explorer


Theorem cbvrmowOLD

Description: Obsolete version of cbvrmow as of 23-May-2024. (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cbvrmowOLD.1 𝑦 𝜑
cbvrmowOLD.2 𝑥 𝜓
cbvrmowOLD.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvrmowOLD ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑦𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvrmowOLD.1 𝑦 𝜑
2 cbvrmowOLD.2 𝑥 𝜓
3 cbvrmowOLD.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 1 2 3 cbvrexw ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴 𝜓 )
5 1 2 3 cbvreuw ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑦𝐴 𝜓 )
6 4 5 imbi12i ( ( ∃ 𝑥𝐴 𝜑 → ∃! 𝑥𝐴 𝜑 ) ↔ ( ∃ 𝑦𝐴 𝜓 → ∃! 𝑦𝐴 𝜓 ) )
7 rmo5 ( ∃* 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 → ∃! 𝑥𝐴 𝜑 ) )
8 rmo5 ( ∃* 𝑦𝐴 𝜓 ↔ ( ∃ 𝑦𝐴 𝜓 → ∃! 𝑦𝐴 𝜓 ) )
9 6 7 8 3bitr4i ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑦𝐴 𝜓 )