Metamath Proof Explorer


Theorem cbvsbcvw

Description: Change the bound variable of a class substitution using implicit substitution. Version of cbvsbcv with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 30-Sep-2008) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypothesis cbvsbcvw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvsbcvw ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑦 ] 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvsbcvw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 1 cbvabv { 𝑥𝜑 } = { 𝑦𝜓 }
3 2 eleq2i ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝐴 ∈ { 𝑦𝜓 } )
4 df-sbc ( [ 𝐴 / 𝑥 ] 𝜑𝐴 ∈ { 𝑥𝜑 } )
5 df-sbc ( [ 𝐴 / 𝑦 ] 𝜓𝐴 ∈ { 𝑦𝜓 } )
6 3 4 5 3bitr4i ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑦 ] 𝜓 )