Metamath Proof Explorer


Theorem cbvsbcw

Description: Change bound variables in a wff substitution. Version of cbvsbc with a disjoint variable condition, which does not require ax-13 . (Contributed by Jeff Hankins, 19-Sep-2009) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvsbcw.1 𝑦 𝜑
cbvsbcw.2 𝑥 𝜓
cbvsbcw.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvsbcw ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑦 ] 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvsbcw.1 𝑦 𝜑
2 cbvsbcw.2 𝑥 𝜓
3 cbvsbcw.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 1 2 3 cbvabw { 𝑥𝜑 } = { 𝑦𝜓 }
5 4 eleq2i ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝐴 ∈ { 𝑦𝜓 } )
6 df-sbc ( [ 𝐴 / 𝑥 ] 𝜑𝐴 ∈ { 𝑥𝜑 } )
7 df-sbc ( [ 𝐴 / 𝑦 ] 𝜓𝐴 ∈ { 𝑦𝜓 } )
8 5 6 7 3bitr4i ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑦 ] 𝜓 )