Metamath Proof Explorer


Theorem cbvsumi

Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005)

Ref Expression
Hypotheses cbvsumi.1 𝑘 𝐵
cbvsumi.2 𝑗 𝐶
cbvsumi.3 ( 𝑗 = 𝑘𝐵 = 𝐶 )
Assertion cbvsumi Σ 𝑗𝐴 𝐵 = Σ 𝑘𝐴 𝐶

Proof

Step Hyp Ref Expression
1 cbvsumi.1 𝑘 𝐵
2 cbvsumi.2 𝑗 𝐶
3 cbvsumi.3 ( 𝑗 = 𝑘𝐵 = 𝐶 )
4 nfcv 𝑘 𝐴
5 nfcv 𝑗 𝐴
6 3 4 5 1 2 cbvsum Σ 𝑗𝐴 𝐵 = Σ 𝑘𝐴 𝐶