Metamath Proof Explorer


Theorem cbvsumv

Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jul-2013)

Ref Expression
Hypothesis cbvsum.1 ( 𝑗 = 𝑘𝐵 = 𝐶 )
Assertion cbvsumv Σ 𝑗𝐴 𝐵 = Σ 𝑘𝐴 𝐶

Proof

Step Hyp Ref Expression
1 cbvsum.1 ( 𝑗 = 𝑘𝐵 = 𝐶 )
2 nfcv 𝑘 𝐴
3 nfcv 𝑗 𝐴
4 nfcv 𝑘 𝐵
5 nfcv 𝑗 𝐶
6 1 2 3 4 5 cbvsum Σ 𝑗𝐴 𝐵 = Σ 𝑘𝐴 𝐶