Metamath Proof Explorer
Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999)
(Proof shortened by Wolf Lammen, 6-Jan-2013)
|
|
Ref |
Expression |
|
Hypotheses |
ccase.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜏 ) |
|
|
ccase.2 |
⊢ ( ( 𝜒 ∧ 𝜓 ) → 𝜏 ) |
|
|
ccase.3 |
⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜏 ) |
|
|
ccase.4 |
⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) |
|
Assertion |
ccase |
⊢ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) → 𝜏 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ccase.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜏 ) |
2 |
|
ccase.2 |
⊢ ( ( 𝜒 ∧ 𝜓 ) → 𝜏 ) |
3 |
|
ccase.3 |
⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜏 ) |
4 |
|
ccase.4 |
⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) |
5 |
1 2
|
jaoian |
⊢ ( ( ( 𝜑 ∨ 𝜒 ) ∧ 𝜓 ) → 𝜏 ) |
6 |
3 4
|
jaoian |
⊢ ( ( ( 𝜑 ∨ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
7 |
5 6
|
jaodan |
⊢ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) → 𝜏 ) |