Metamath Proof Explorer


Theorem ccase2

Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999)

Ref Expression
Hypotheses ccase2.1 ( ( 𝜑𝜓 ) → 𝜏 )
ccase2.2 ( 𝜒𝜏 )
ccase2.3 ( 𝜃𝜏 )
Assertion ccase2 ( ( ( 𝜑𝜒 ) ∧ ( 𝜓𝜃 ) ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 ccase2.1 ( ( 𝜑𝜓 ) → 𝜏 )
2 ccase2.2 ( 𝜒𝜏 )
3 ccase2.3 ( 𝜃𝜏 )
4 2 adantr ( ( 𝜒𝜓 ) → 𝜏 )
5 3 adantl ( ( 𝜑𝜃 ) → 𝜏 )
6 3 adantl ( ( 𝜒𝜃 ) → 𝜏 )
7 1 4 5 6 ccase ( ( ( 𝜑𝜒 ) ∧ ( 𝜓𝜃 ) ) → 𝜏 )