Metamath Proof Explorer
Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999)
|
|
Ref |
Expression |
|
Hypotheses |
ccase2.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜏 ) |
|
|
ccase2.2 |
⊢ ( 𝜒 → 𝜏 ) |
|
|
ccase2.3 |
⊢ ( 𝜃 → 𝜏 ) |
|
Assertion |
ccase2 |
⊢ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) → 𝜏 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ccase2.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜏 ) |
| 2 |
|
ccase2.2 |
⊢ ( 𝜒 → 𝜏 ) |
| 3 |
|
ccase2.3 |
⊢ ( 𝜃 → 𝜏 ) |
| 4 |
2
|
adantr |
⊢ ( ( 𝜒 ∧ 𝜓 ) → 𝜏 ) |
| 5 |
3
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜏 ) |
| 6 |
3
|
adantl |
⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) |
| 7 |
1 4 5 6
|
ccase |
⊢ ( ( ( 𝜑 ∨ 𝜒 ) ∧ ( 𝜓 ∨ 𝜃 ) ) → 𝜏 ) |